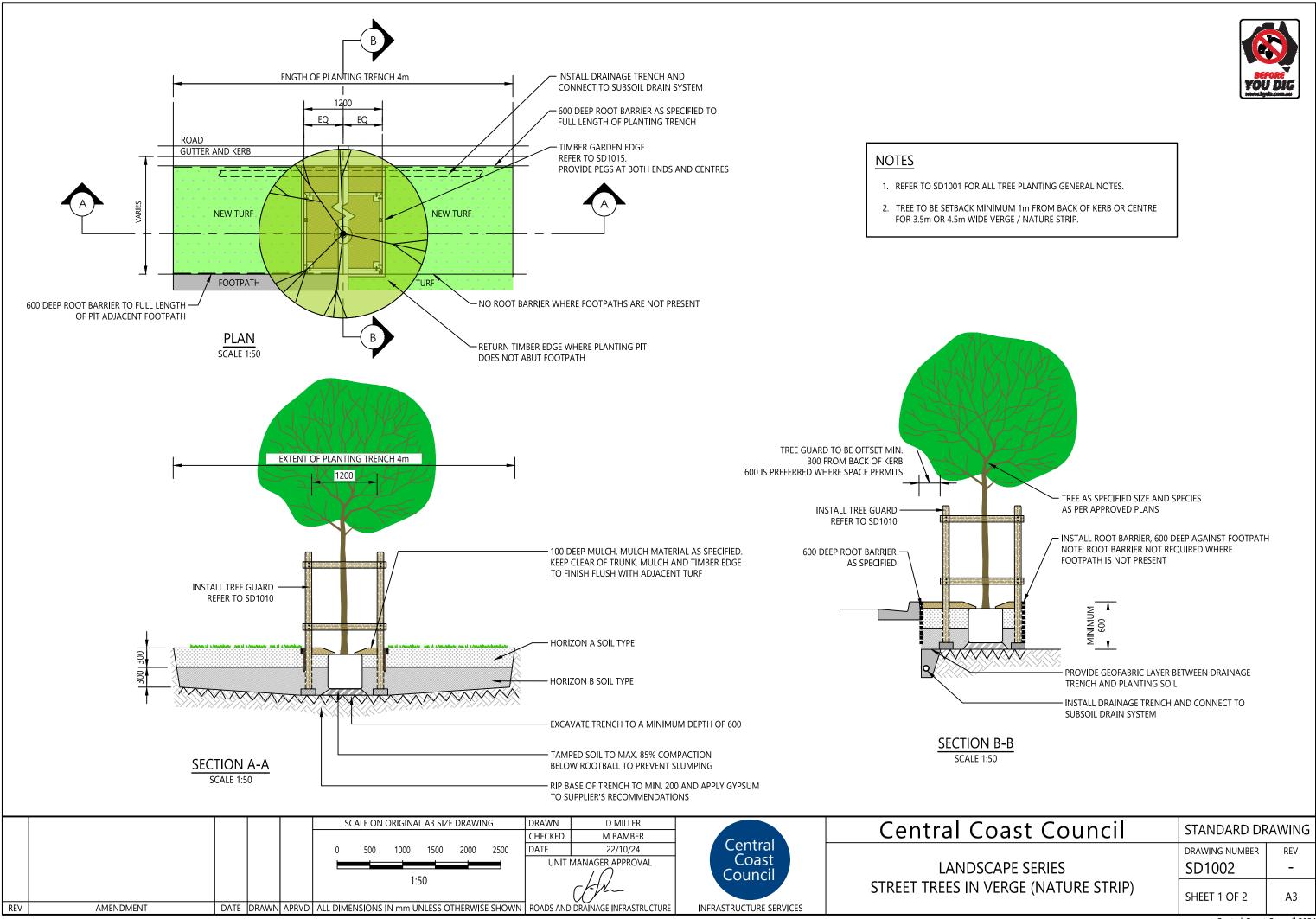
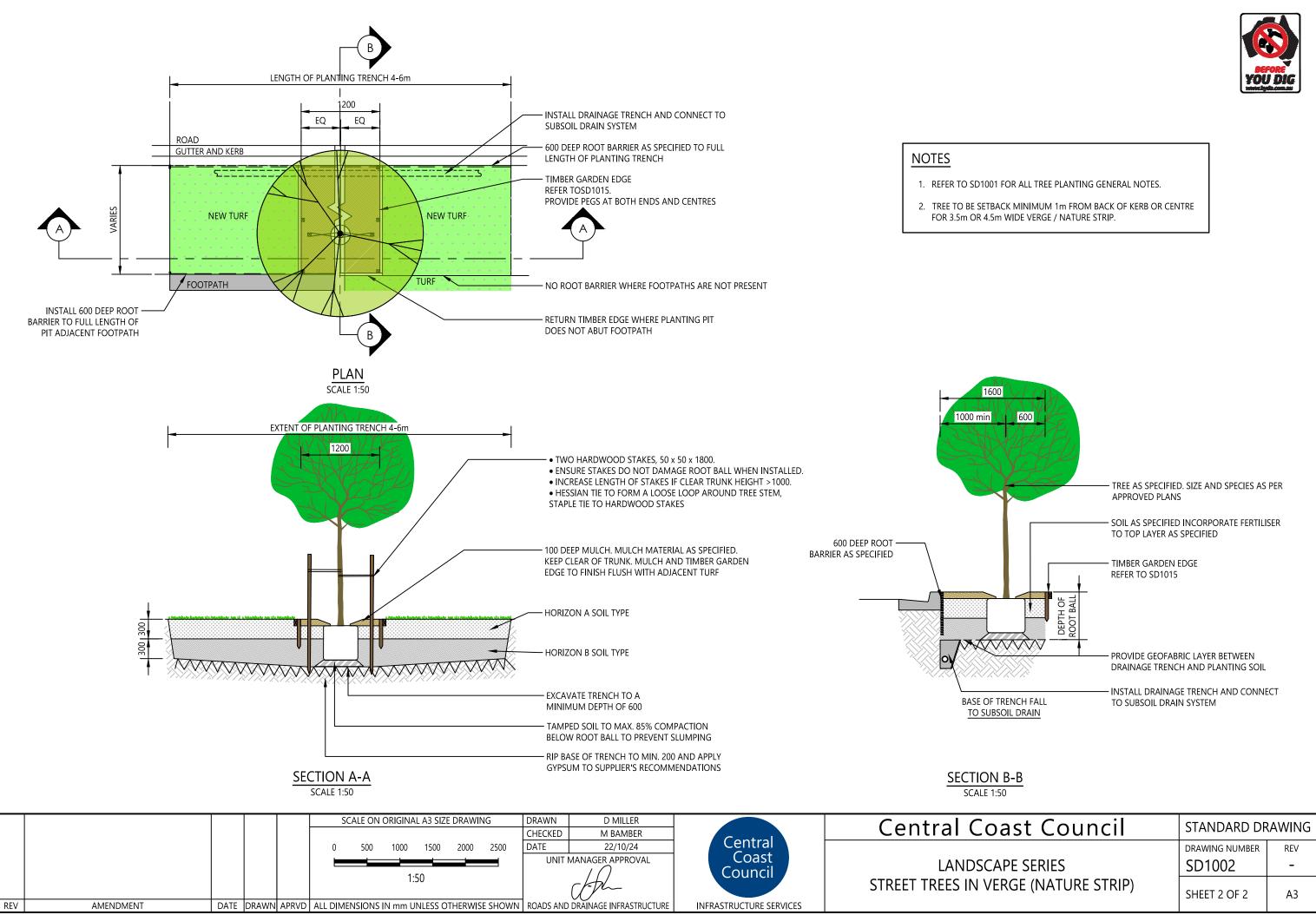
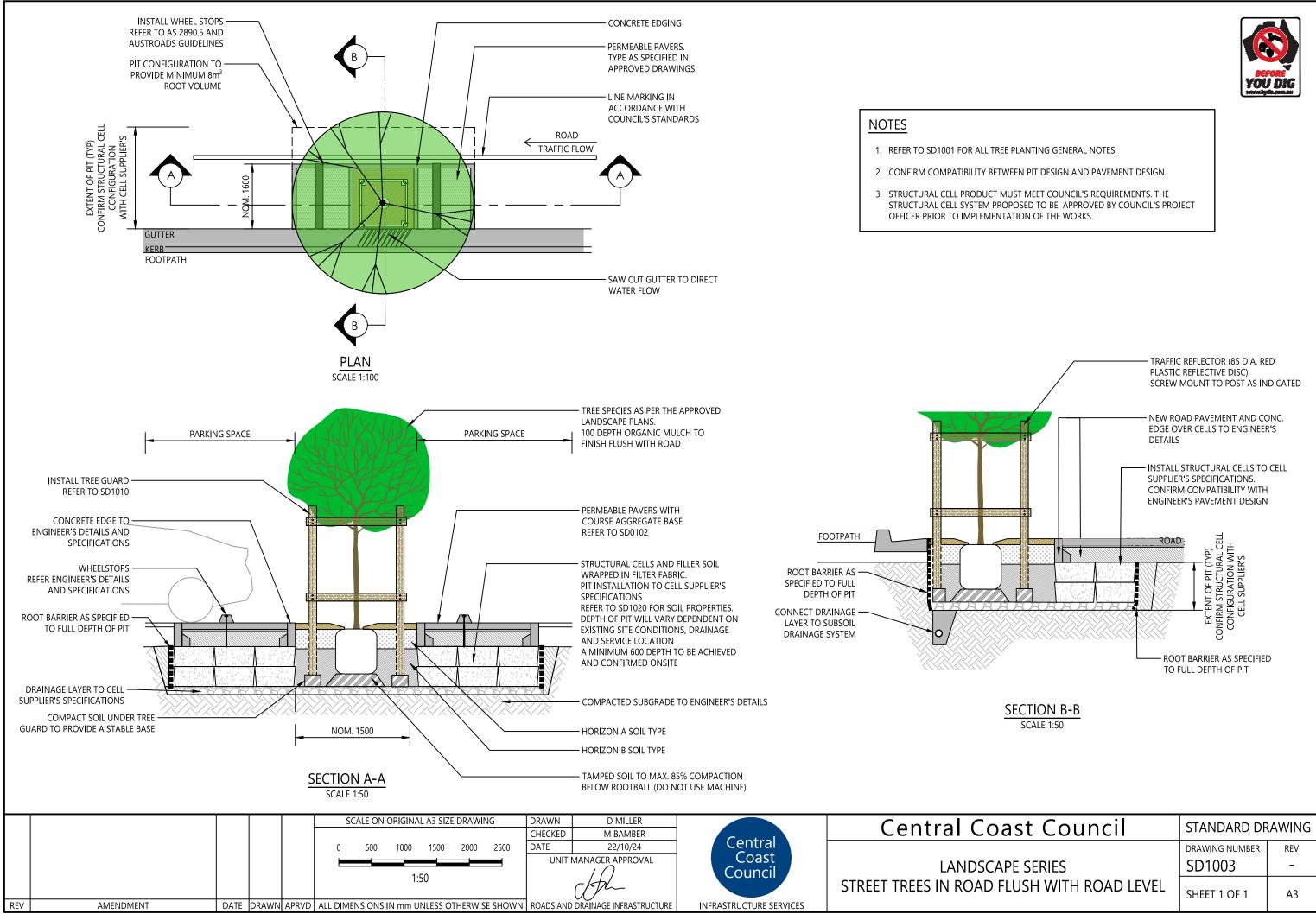
TREE PLANTING GENERAL NOTES

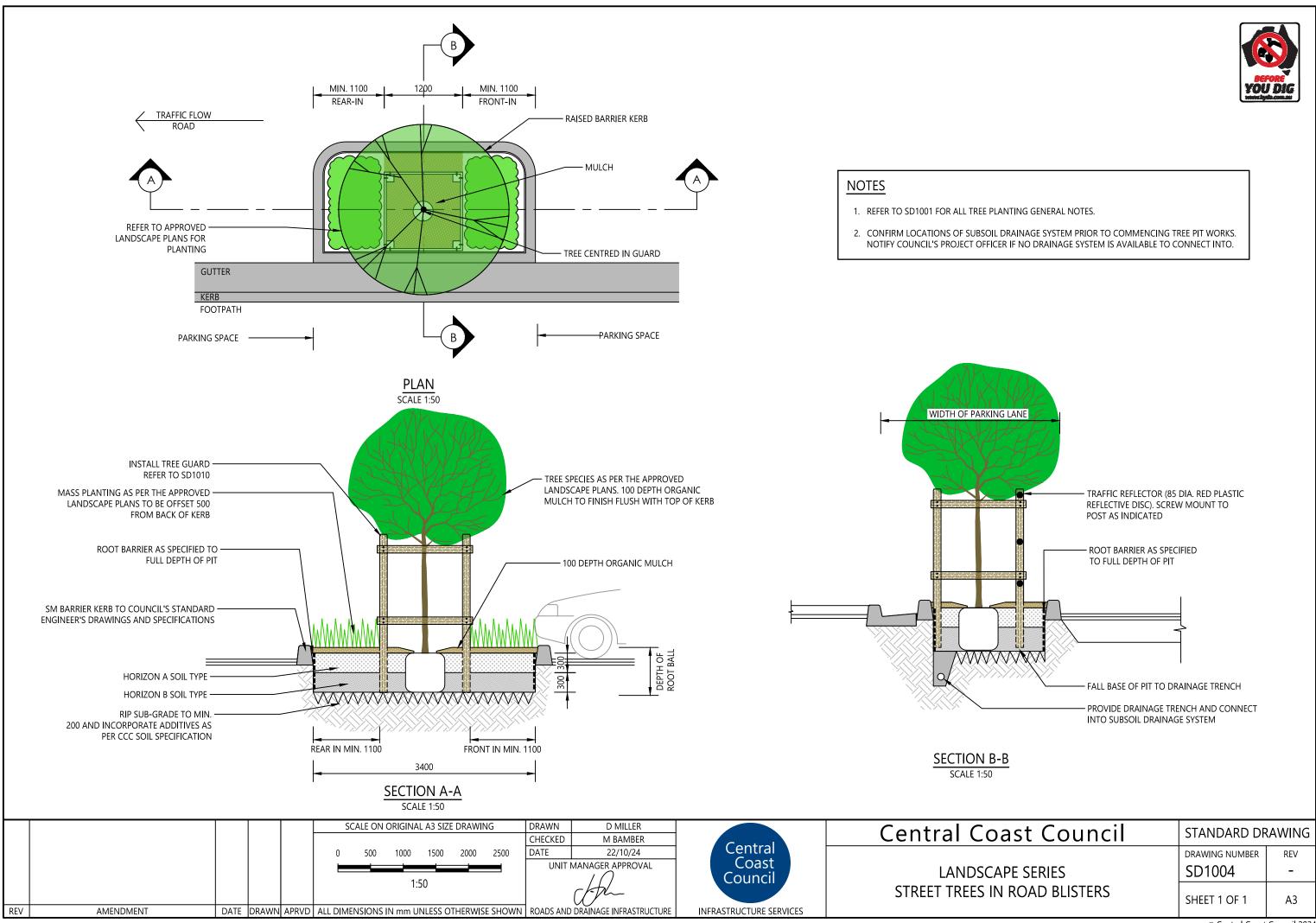

- 1. TREES ARE TO BE SUPPLIED IN ACCORDANCE WITH AS2303. REFER TO SD1021 SECTION 6 PLANT PROCUREMENT FOR FURTHER DETAIL.
- 2. TREE SPECIES SUBSTITUTION REQUIRES WRITTEN CONSENT FROM CENTRAL COAST COUNCIL (CCC).
- MINIMUM STREET TREE INSTALLATION SIZE TO CONFORM TO THE CORRESPONDING LIST UNLESS INDICATED IN THE CONDITIONS OF CONSENT, OR AGREED TO WITH CCC. RECOMMENDED MINIMUM TREE SIZE:
 - LESS THAN OR EQUAL TO 25L FOR RESIDENTS PLANTING IN EXISTING VERGES
 - LESS THAN OR EQUAL TO 75L FOR COUNCIL PROJECTS
 - GREATER THAN OR EQUAL TO 100L FOR PRIVATE DEVELOPMENTS OR SUBDIVISION PROJECTS
 - 200L OR GREATER FOR SIGNIFICANT DEVELOPMENTS OR PUBLIC DOMAIN PROJECTS WHERE EXISTING SERVICES ALLOW
- 4. REFER TO SD1021 FOR ALL PROGRAMMING, PLANTING, ESTABLISHMENT AND MAINTENANCE OPERATIONS REQUIREMENTS.
- 5. REFER TO SD1020 FOR SOIL PROPERTIES REQUIREMENTS.
- 6. OBTAIN BEFORE YOU DIG AUSTRALIA (BYDA) SERVICE UTILITY PLANS PRIOR TO STARTING WORK.
- 7. GROUND TRUTH ALL POSSIBLE CONFLICTS WITH UNDERGROUND AND OVERHEAD SERVICES PRIOR TO COMMENCEMENT OF WORKS.
- 8. ALL TIMBER IN CONTACT WITH THE GROUND TO BE SUITABLE FOR IN-GROUND USE.

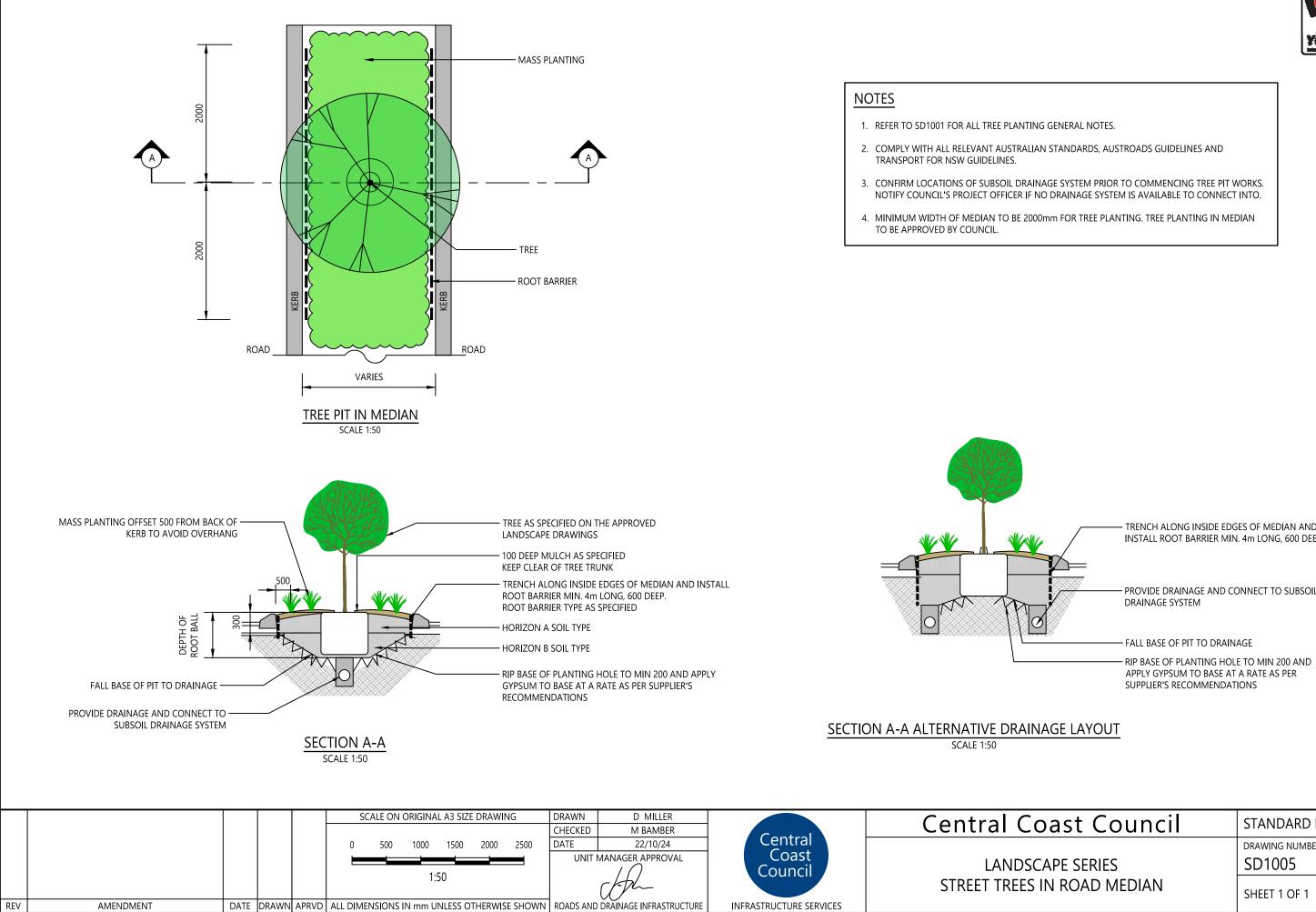
9. NO STREET TREE SHALL BE CLOSER THAN:

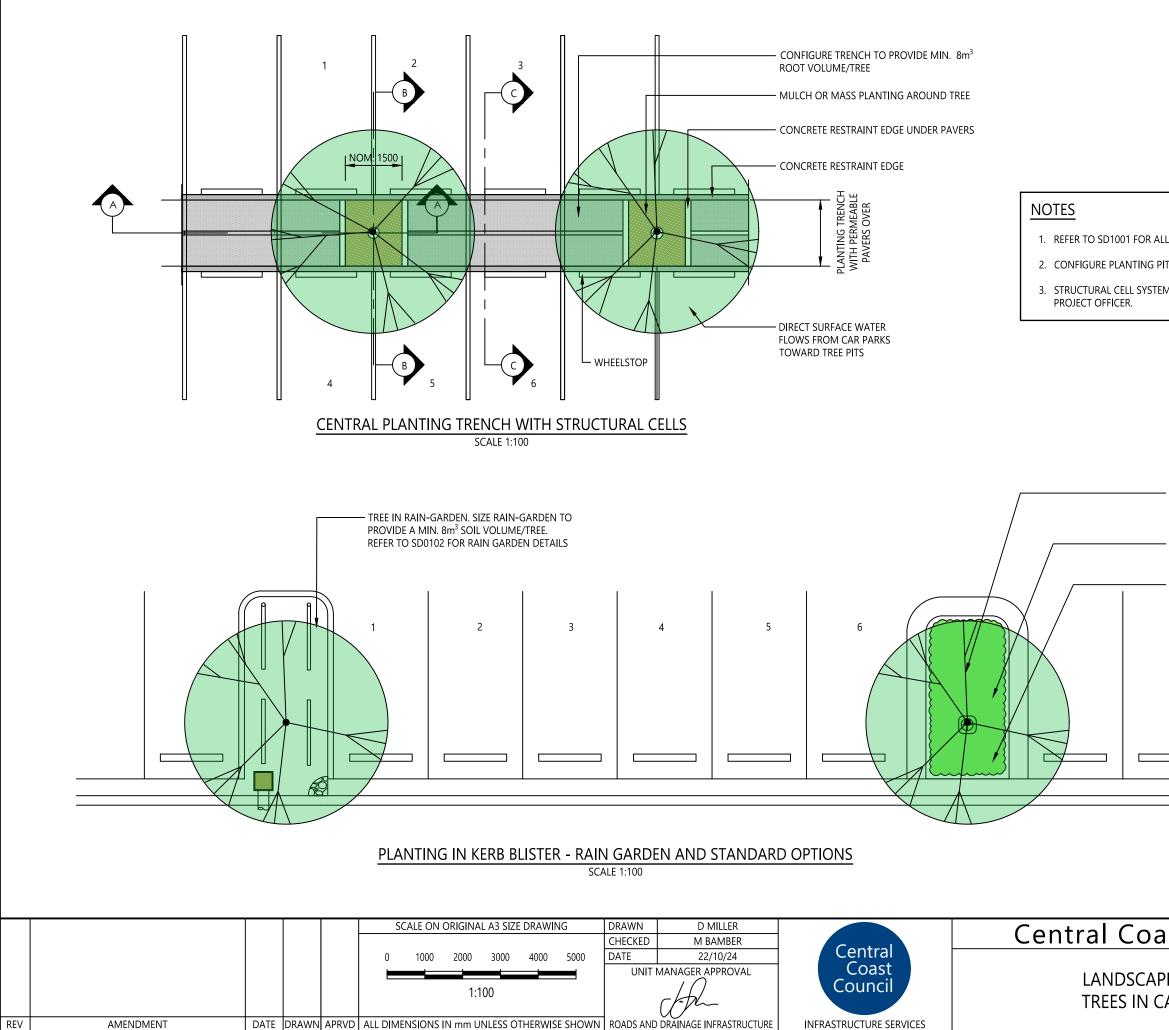

- 12m FROM BUILDING LINE AT INTERSECTION OF MAJOR ROADS, OR 6m FROM MINOR ROADS.
- 3m FROM DRIVEWAYS OR ACCESS WAYS SUCH AS LANEWAYS
- 3m FROM POWER POLES AND LIGHT POLES
- AT LEAST 15m FROM BUS STOPS
- 2.5m FROM STORMWATER KERB INLET PITS
- 10. PLANT TREE 1m FROM BACK OF KERB OR CENTRE FOR 3.5m TO 4.5m VERGE/NATURE STRIPS WHERE APPROVED BY COUNCIL'S REPRESENTATIVE.
- 11. REFER TO AUSTROADS STANDARDS FOR GUIDANCE ON TREES IN HAZARDOUS LOCATIONS OR IN HIGH-SPEED VEHICLE ENVIRONMENTS.
- 12. INSTALL LINEAR ROOT BARRIER 600 MINIMUM DEPTH. ROOT BARRIER SHALL SIT FLUSH WITH SURROUNDING SOIL AND BE COVERED BY MULCH.
- 13. ENSURE TREE SPECIES SELECTED WILL PROVIDE SUFFICIENT VERTICAL (MINIMUM 2.5m CANOPY HEIGHT) AND HORIZONTAL CLEARANCES AT A MATURE AGE TO ENSURE THROUGH TRAFFIC IS NOT OBSTRUCTED AND SIGHT LINES ARE MAINTAINED.
- 14. ENSURE TREE SPECIES SELECTED DO NOT IMPACT ON UTILITIES AND STREET INFRASTRUCTURE SUCH AS UNDERGROUND SERVICES, KERB AND GUTTERING, DRAINAGE, FOOTPATHS AND DRIVEWAYS.
- 15. REFER TO COUNCIL'S CIVIL WORKS SPECIFICATION DESIGN GUIDELINE AND CONSTRUCTION SPECIFICATION FOR ADDITIONAL DESIGN AND CONSTRUCTION REQUIREMENTS.
- 16. THESE STANDARD DRAWINGS ARE BASED ON ORIGINAL DRAWINGS PREPARED BY MICHAEL WHITE LANDSCAPE ARCHITECTURE DATED 2024 FOR CENTRAL COAST COUNCIL'S STRATEGIC PLANNING UNIT.

					SCALE ON ORIGINAL A3 SIZE DRAWING	DRAWN	D MILLER		Control Coo
						CHECKED	M BAMBER		Central Coas
						DATE	22/10/24	Central	
					NOT TO SCALE	UNIT	MANAGER APPROVAL	Coast	
							$1 \cap$	Council	LANDSCAPE
							(the)		TREE PLANTING GE
						4	\sim		
REV	AMENDMENT	DATE	DRAWN	APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN	ROADS AND	DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES	


ast Council	STANDARD DF	RAWING
PE SERIES	DRAWING NUMBER	REV _
GENERAL NOTES	SHEET 1 OF 1	A3



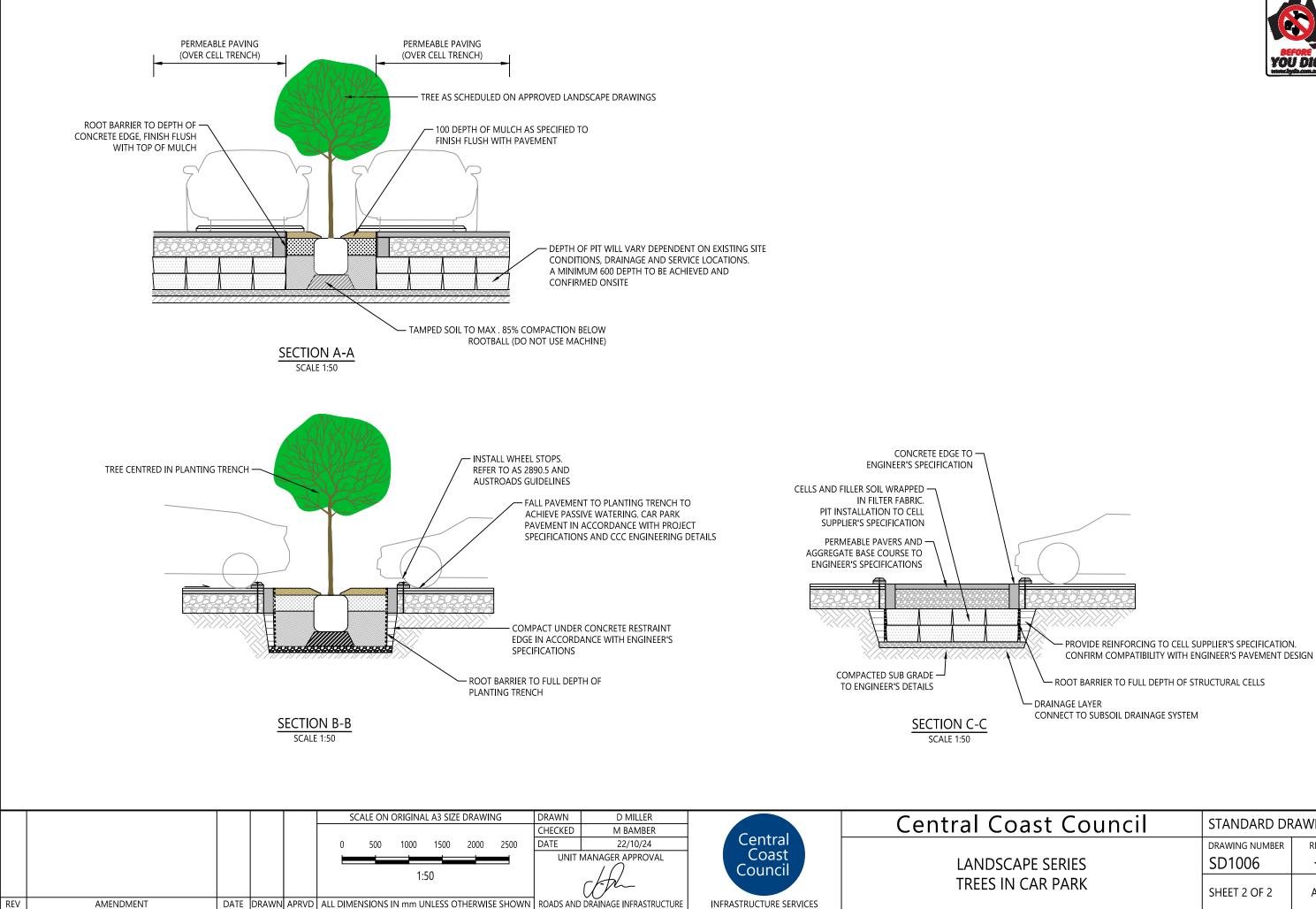




ist Council	STANDARD DF	RAWING
PE SERIES	DRAWING NUMBER	REV _
ROAD MEDIAN	SHEET 1 OF 1	A3

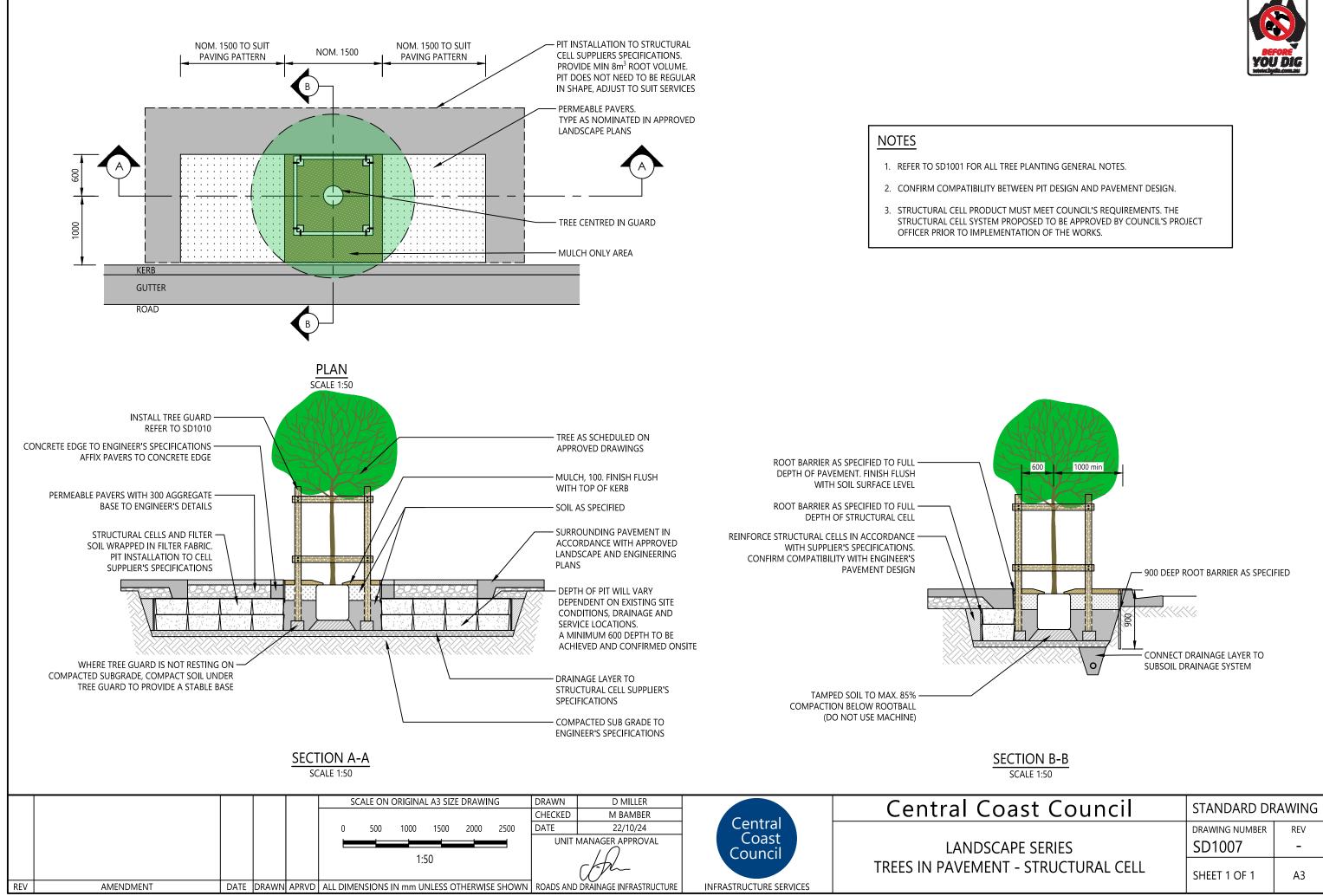
TRENCH ALONG INSIDE EDGES OF MEDIAN AND INSTALL ROOT BARRIER MIN. 4m LONG, 600 DEEP PROVIDE DRAINAGE AND CONNECT TO SUBSOIL

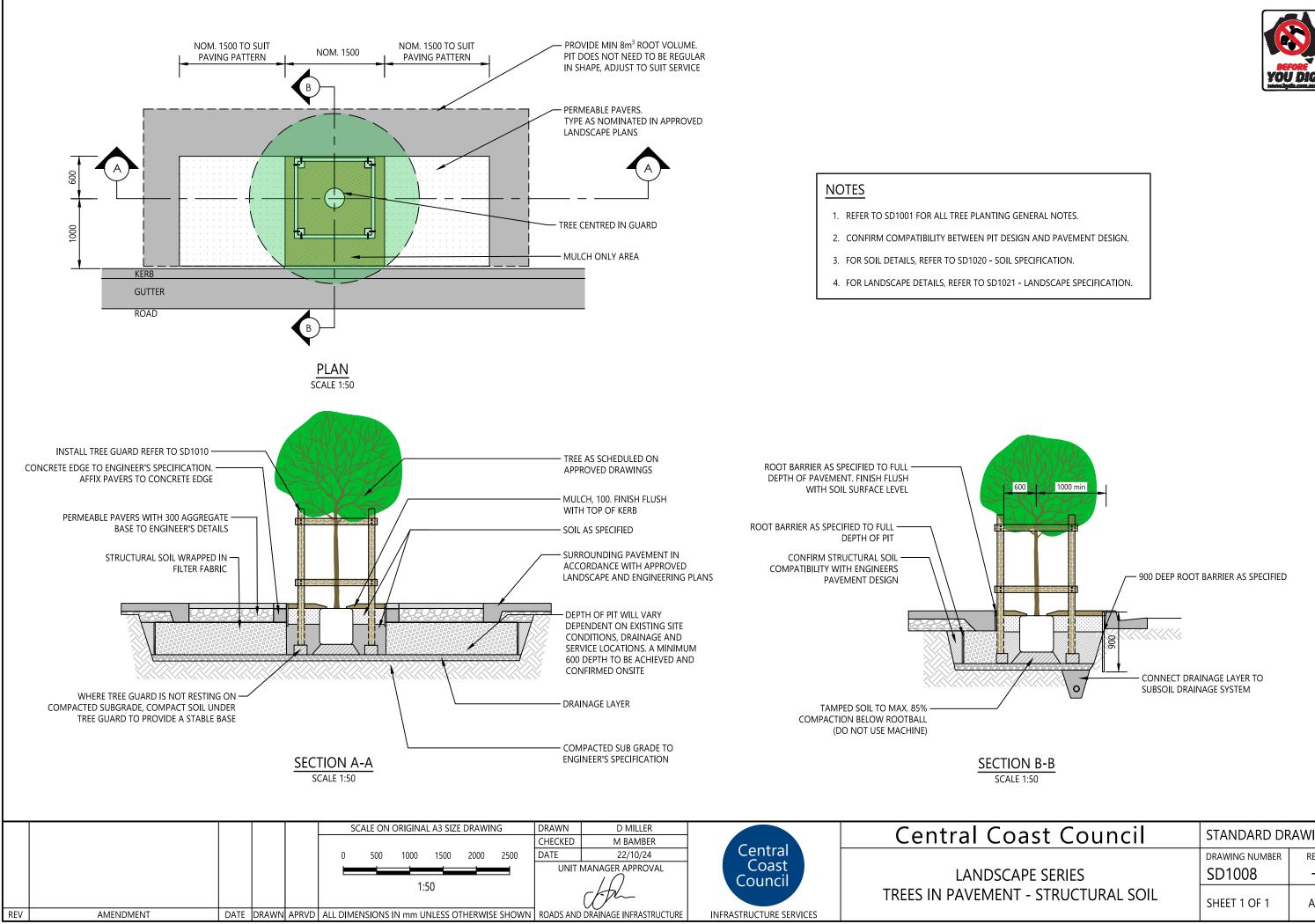
st Council	STANDARD DR	RAWING
E SERIES	DRAWING NUMBER	REV -
AR PARK	SHEET 1 OF 2	A3


- MASS PLANTING

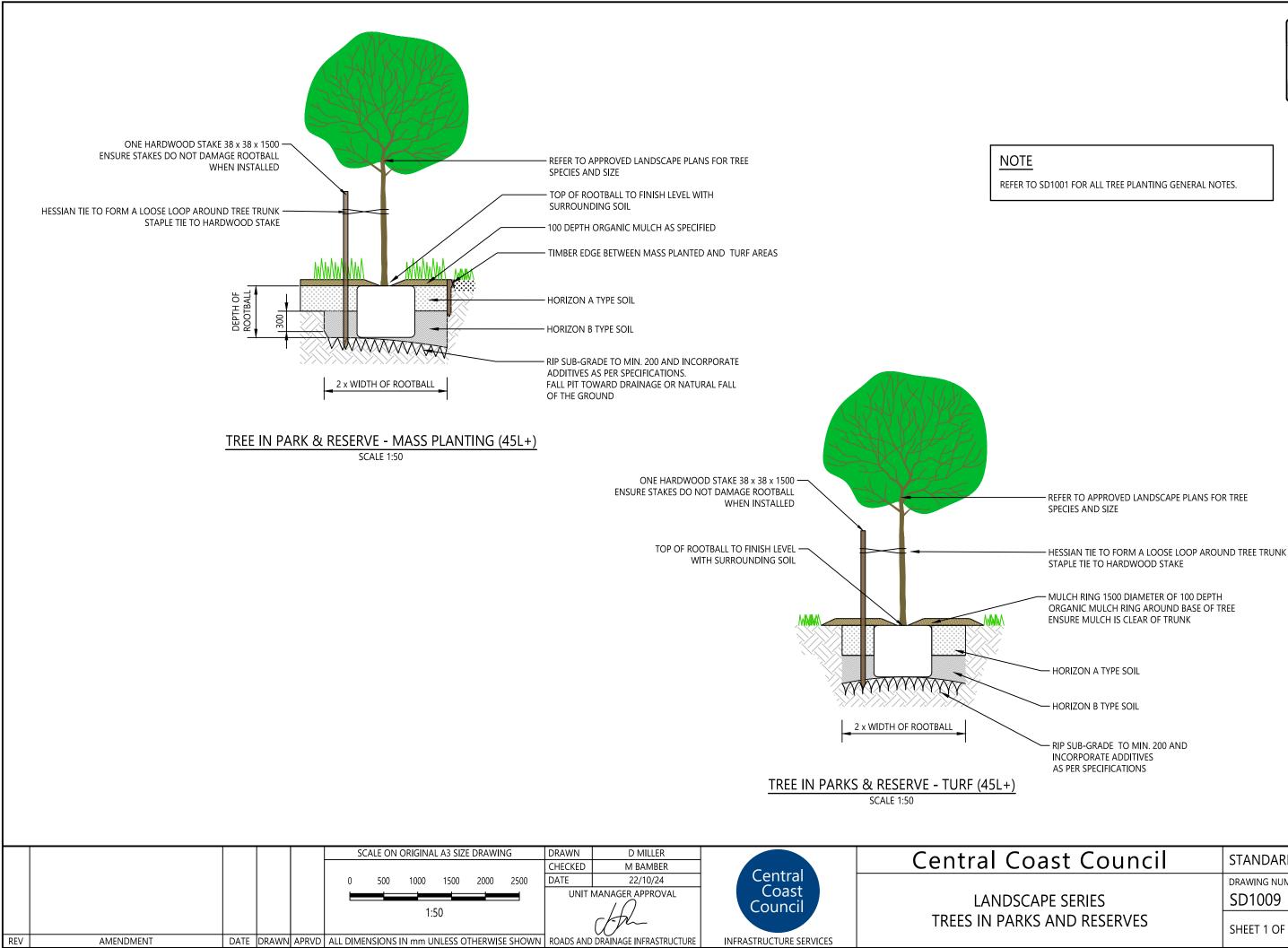
PLANTING TO BE SETBACK MIN. 500 FROM BACK OF KERB

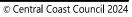
- TREE IN KERB BLISTER. WIDTH OF ISLAND TO ENSURE PROVISION OF 8m³ SOIL VOLUME/TREE


REFER TO SD1001 FOR ALL TREE PLANTING GENERAL NOTES.
 CONFIGURE PLANTING PITS TO PROVIDE A MINIMUM OF 8m³ SOIL VOLUME PER TREE.
 STRUCTURAL CELL SYSTEM PROPOSED FOR USE MUST BE APPROVED BY COUNCIL'S



ast Council	STANDARD DR	RAWING
PE SERIES	DRAWING NUMBER	REV -
CAR PARK	SHEET 2 OF 2	A3



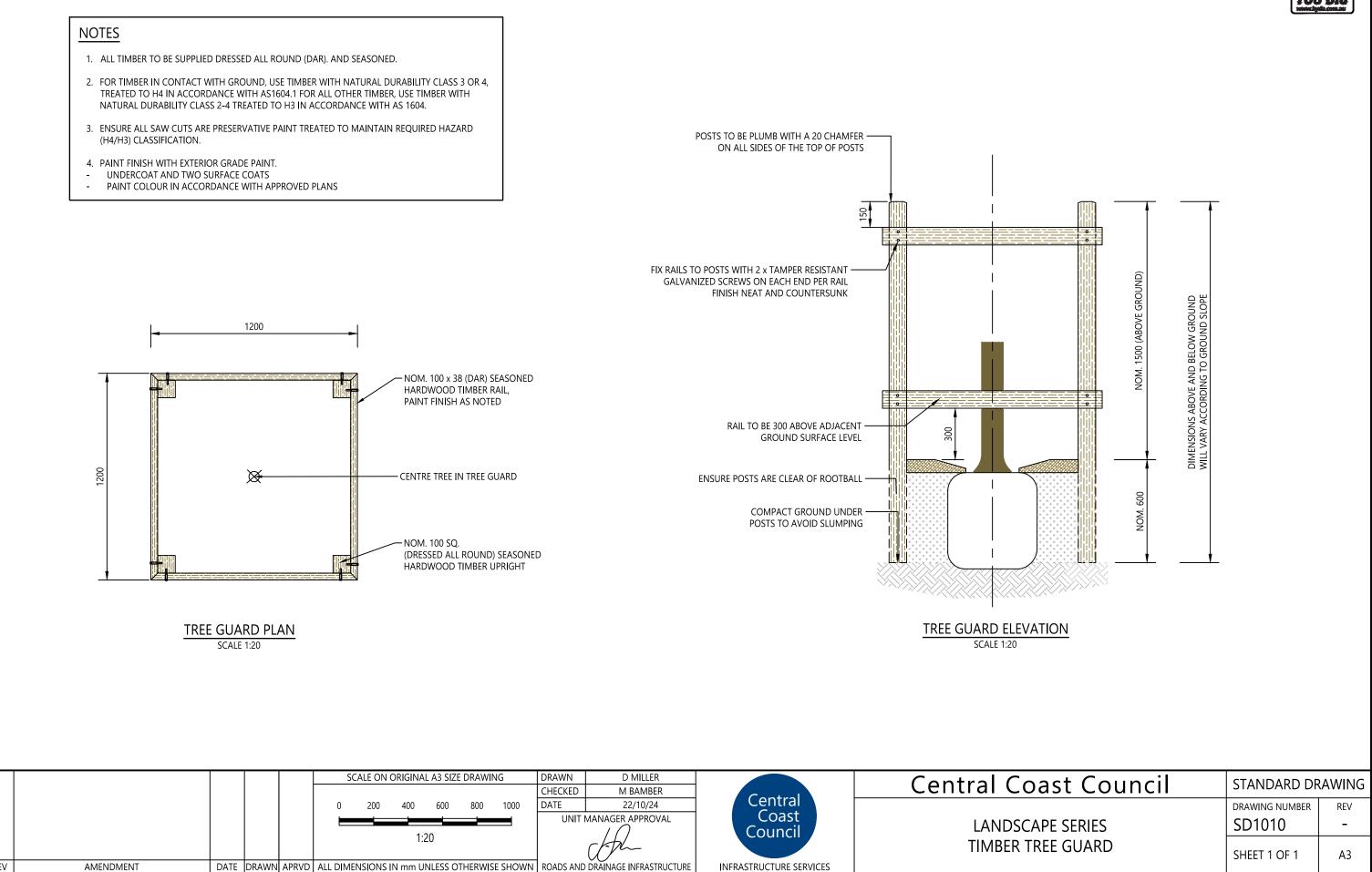


ast Council	STANDARD DR	RAWING
PE SERIES	DRAWING NUMBER	REV -
- STRUCTURAL SOIL	SHEET 1 OF 1	A3

st Council	STANDARD DF	RAWING
E SERIES	DRAWING NUMBER	REV -
AND RESERVES	SHEET 1 OF 1	A3

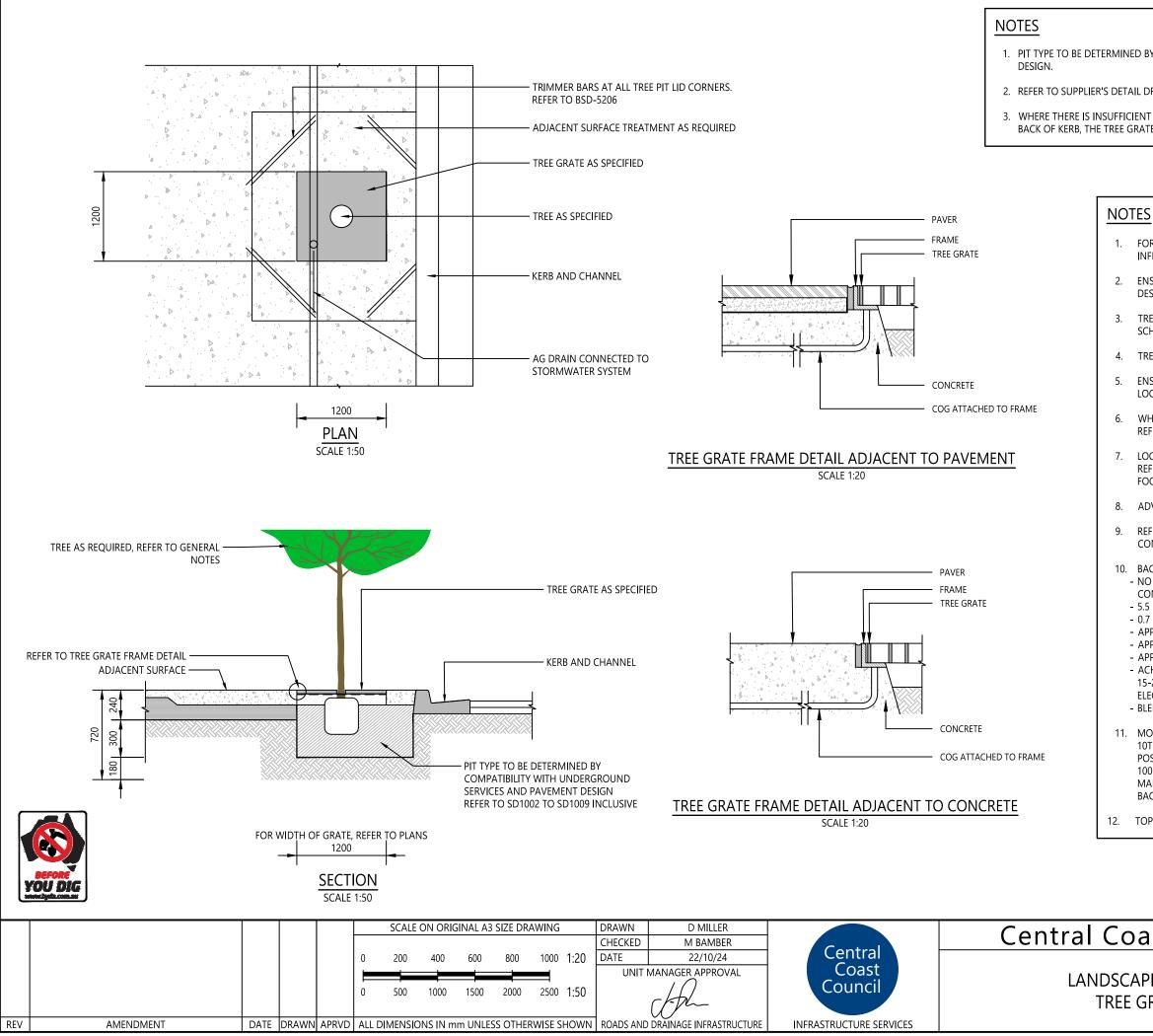
- RIP SUB-GRADE TO MIN. 200 AND INCORPORATE ADDITIVES AS PER SPECIFICATIONS

- HORIZON B TYPE SOIL


- HORIZON A TYPE SOIL

MULCH RING 1500 DIAMETER OF 100 DEPTH ORGANIC MULCH RING AROUND BASE OF TREE ENSURE MULCH IS CLEAR OF TRUNK

SPECIES AND SIZE


REFER TO APPROVED LANDSCAPE PLANS FOR TREE

							\mathcal{U}^{μ}	1
- [REV	AMENDMENT	DATE	DRAWN	APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN	ROADS AND DRAINAGE INFRASTRUCTURE	INF

1. PIT TYPE TO BE DETERMINED BY COMPATIBILITY WITH UNDERGROUND SERVICES AND PAVEMENT

2. REFER TO SUPPLIER'S DETAIL DRAWINGS AND INSTALLATION INSTRUCTIONS.

3. WHERE THERE IS INSUFFICIENT WIDTH IN THE VERGE TO ACCOMMODATE 1000mm TREE SETBACK FROM BACK OF KERB, THE TREE GRATE IS TO BE ATTACHED TO THE BACK OF KERB.

1. FOR TREE GRATE STYLE AND LOCATIONS FOR USE REFER TO THE INFRASTRUCTURE DESIGN PLANNING SCHEME POLICY.

2. ENSURE TREE GRATE HAS MINIMUM LOAD RATING OF CLASS B (CLASS C DESIRED) TO AS 3996.

3. TREE SPECIES TO BE SELECTED AS PER INFRASTRUCTURE DESIGN PLANNING SCHEME POLICY (CHAPTER 5).

TREE PIT TO BE INSTALLED TO FULL DEPTH AND WIDTH.

ENSURE SERVICE HAVE BEEN LOCATED PRIOR TO EXCAVATION. IF TREE LOCATION CONFLICTS WITH SERVICE CONSULT WITH SERVICE PROVIDER.

WHERE POSSIBLE INCORPORATE WSUD DETAIL CAPTURE STREET LAYER. REFER TO BRISBANE CITY COUNCIL STANDARD DRAWING BSD-9031.

LOCATION OF TREE GRATE CAN VARY DEPENDING ON WIDTH OF FOOTPATH. REFER TO INFRASTRUCTURE DESIGN SCHEME POLICY (CHAPTER 5) FOR FOOTPATH LAYOUTS.

ADVANCED TREES TO HAVE APPROPRIATE ANCHOR BENEATH LAYOUTS.

REFER TO BRISBANE CITY COUNCIL STANDARD DRAWING BSD-5202 FOR CONCRETE AND REINFORCING MESH DETAIL U.N.O.

10. BACKFILL SOIL BLEND TO CONFORM TO THE FOLLOWING AS 4419 SPECS: - NO GREATER THAN 20% SCREENED WELL COMPOSTED ORGANIC MATTER CONTENT BY VOLUME

- 5.5 - 7.5 pH

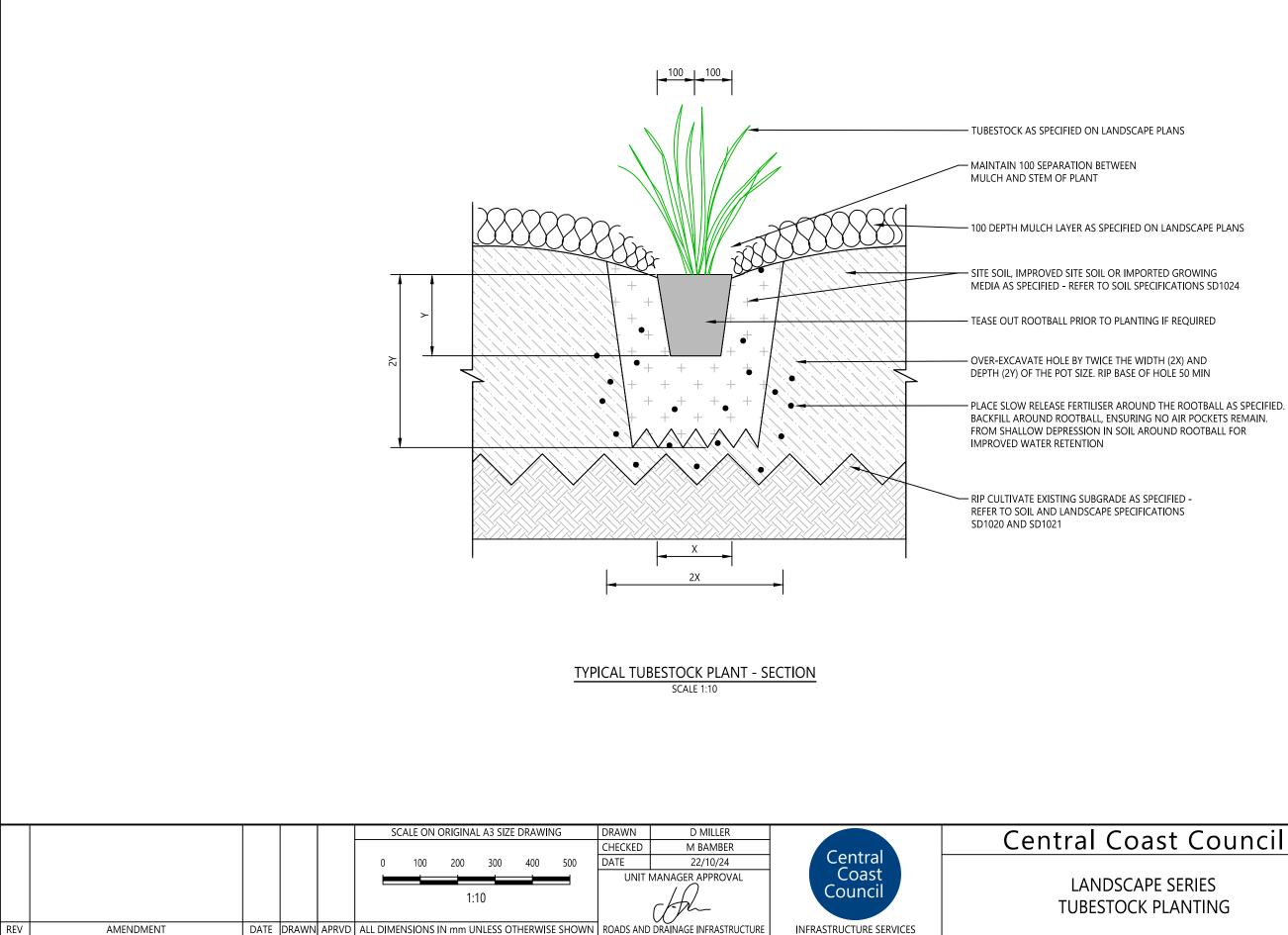
- 0.7 - 1.0 kg/l OR GM/CM3 BULK DENSITY

- APPROX 60% BY VOLUME SCREENED TOPSOIL

- APPROX 10% 2-3mm WASHED DECO (TO ENHANCE CEC)

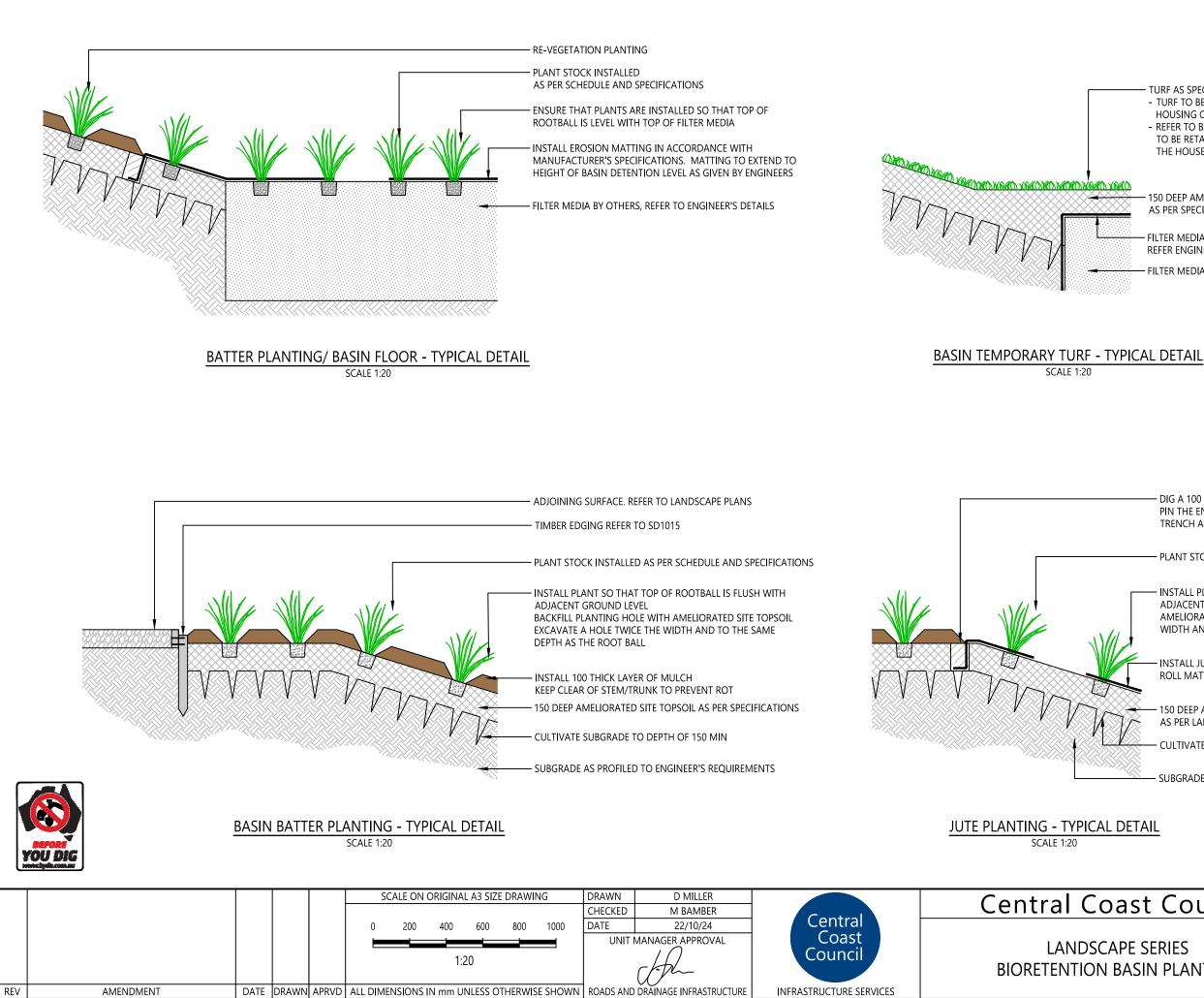
- APPROX 10% MEDIUM (0.25-1.0mm) RIVER SAND

- ACHIEVING NO GREATER THAN 30-50CM / HR HYDRAULIC CONDUCTIVITY; 15-20% WATER HOLDING CAPACITY; AND NO GREATER THAN 2dS/m


ELECTRICAL CONDUCTIVITY (SALINITY)

- BLEND TO BE NO GREATER THAN 5°C ABOVE AMBIENT ARE TEMPERATURE

11. MODULAR SOIL CELL IS TO BE STRUCTURALLY CERTIFIED TO CARRY LOADS OF 10T MINIMUM. CELL IS TO PROVIDE AT LEAST 90% FREE SOIL VOLUME. WITH POSITIVE VERTICAL AND LATERAL INTERLOCKS (AND HAVE A MINIMUM OF 100MM GAPS TO ALLOW FOR ROOT GROWTH) INSTALLED AS PER MANUFACTURER'S INSTRUCTIONS. CELLS ARE TO BE BACKFILLED WITH BACKFILL SOIL BLEND AS SPECIFIED ABOVE.


12. TOP OF ROOTBALL TO BE EQUAL TO TOP OF BACKFILL SOIL.

st Council	STANDARD DR	RAWING
E SERIES	DRAWING NUMBER	REV -
RATE	SHEET 1 OF 1	A3

ast Council	STANDARD DF	AWING
PE SERIES	DRAWING NUMBER	REV -
PLANTING	SHEET 1 OF 1	A3

TURF AS SPECIFIED

- TURF TO BE INSTALLED, ESTABLISHED AND MAINTAINED DURING HOUSING CONSTRUCTION WORKS.
- REFER TO BASIN PHASE 2 LANDSCAPE PLANS FOR EXTENT OF TURF TO BE RETAINED AND TURF TO BE REMOVED FOLLOWING 80% OF THE HOUSES COMPLETE WITHIN THE DRAINAGE CATCHMENT.

150 DEEP AMELIORATED SITE TOPSOIL AS PER SPECIFICATION

FILTER MEDIA TO BE WRAPPED IN GEOTEXTILE REFER ENGINEER'S DETAILS

FILTER MEDIA. REFER TO ENGINEER'S DETAILS

DIG A 100 WIDE x 150 DEEP TRENCH AT TOP OF BATTER. PIN THE END OF THE JUTE ROLL ONTO THE BOTTOM OF THE TRENCH AND BACKFILL WITH AMELIORATED SITE TOPSOIL PLANT STOCK INSTALLED AS PER SCHEDULE AND SPECIFICATION INSTALL PLANT SO THAT TOP OF ROOTBALL IS FLUSH WITH ADJACENT GROUND LEVEL. BACKFILL PLANTING HOLE WITH

AMELIORATED SITE TOPSOIL. EXCAVATE A HOLE TWICE THE WIDTH AND TO THE SAME DEPTH AS THE ROOT BALL

- INSTALL JUTE MESH TO MANUFACTURER'S SPECIFICATIONS ROLL MATTING DOWN-SLOPE WITH MINIMUM 100 OVERLAP

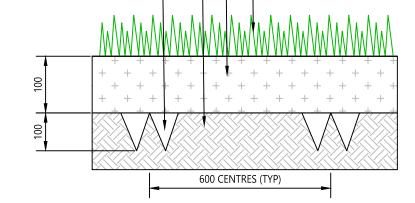
150 DEEP AMELIORATED SITE TOPSOIL AS PER LANDSCAPE SPECIFICATION

CULTIVATE SUBGRADE TO DEPTH OF 150 MIN

SUBGRADE AS PROFILED TO ENGINEER'S REQUIREMENTS

ast Council	STANDARD DF	RAWING
PE SERIES	DRAWING NUMBER	REV _
ASIN PLANTING	SHEET 1 OF 1	A3

NOTES	


- SPORTS TURF ADVICE IS REQUIRED FOR PLAYING SURFACES.
- CONDITIONS OF CONSENT.

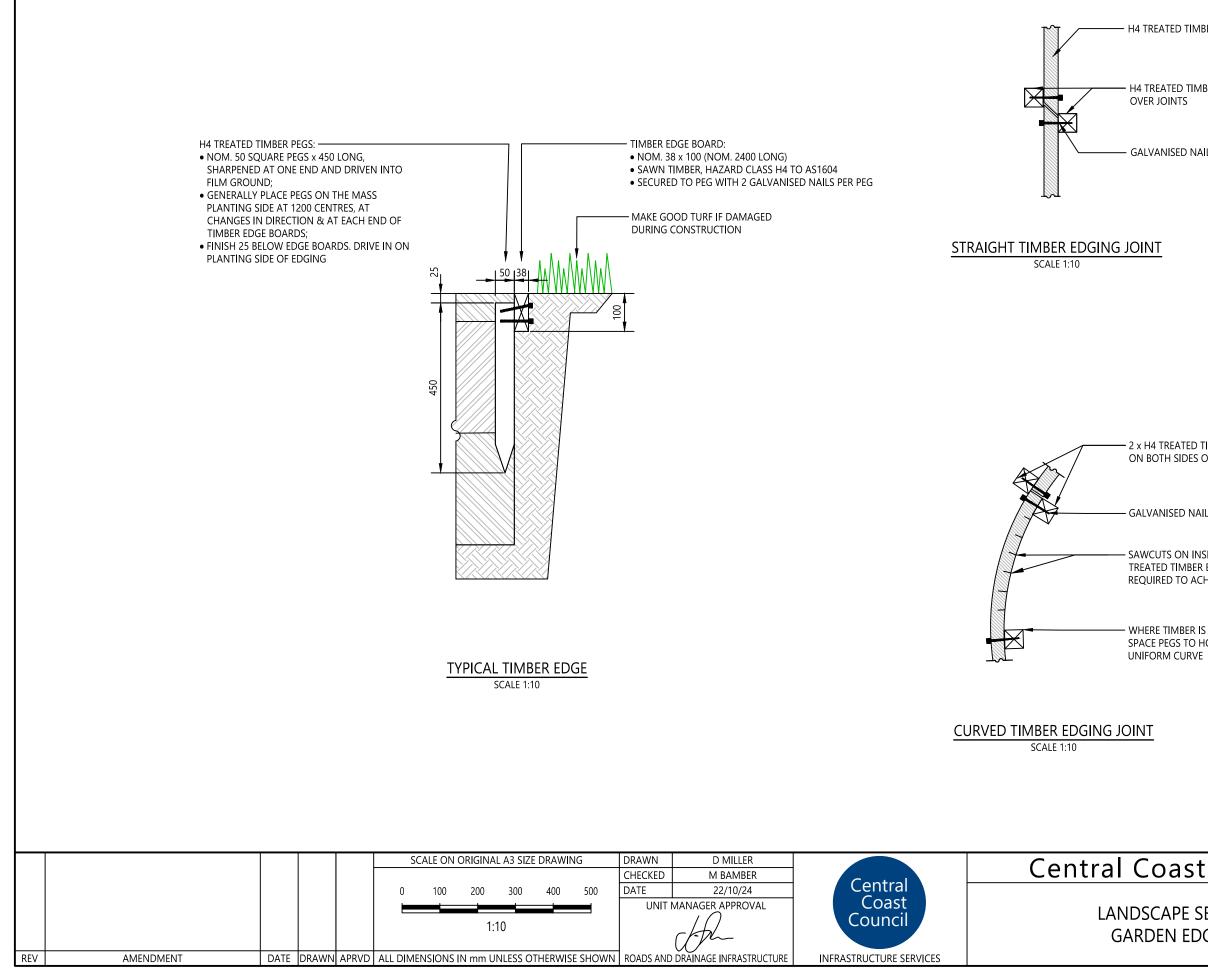
TURF AS SCHEDULED ON APPROVED LANDSCAPE PLANS – LAY TURF IN STRETCHER PATTERN WITH JOINTS STAGGERED AND CLOSE BUTTED TURF REQUIREMENTS IN ACCORDANCE WITH LANDSCAPE SPECIFICATIONS SD1021

TOP SOIL IN ACCORDANCE WITH SOIL SPECIFICATION SD1020

SUBGRADE -----REMOVE RUBBISH, WEEDS AND OTHER DELETERIOUS MATERIALS REMOVE STONES AND CLODS EXCEEDING 50

CULTIVATE SUBGRADE TO NOM.100 DEEP AT 600 CENTRES, PARALLEL TO CONTOURS. -INCORPORATE SUBSOIL ADDITIVES IN ACCORDANCE WITH SOIL SPECIFICATIONS SD1020

TYPICAL TURF PLANTING SCALE 1:10


						DRAWN CHECKED	D MILLER M BAMBER		Central Coa
					0 100 200 300 400 500 	DATE UNIT N	22/10/24 MANAGER APPROVAL	Central Coast Council	LANDSCAF TUI
REV	AMENDMENT	DATE	DRAWN	I APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN	ROADS AND	DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES	

1. THIS DETAIL IS NOT INTENDED FOR SPORTS FIELDS. SPECIALIST

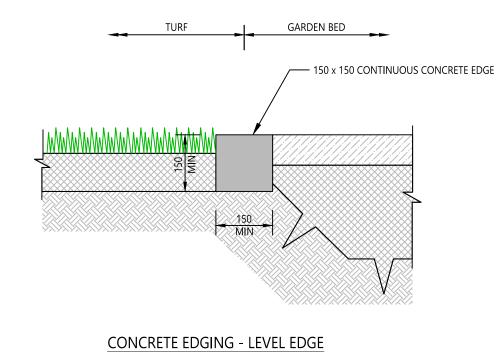
2. TURF SPECIES TO BE COUCH UNLESS OTHERWISE INDICATED IN

ast Council	STANDARD DR	RAWING
PE SERIES	drawing number	REV -
RF	SHEET 1 OF 1	A3

- H4 TREATED TIMBER EDGE BOARD

H4 TREATED TIMBER PEGS STAGGERED

GALVANISED NAILS, 2 NAILS / EA PEG


2 x H4 TREATED TIMBER PEGS ON BOTH SIDES OF JOINT

- GALVANISED NAILS, 2 NAILS / EA PEG

SAWCUTS ON INSIDE FACE OF H4 TREATED TIMBER EDGE BOARD AS REQUIRED TO ACHIEVE RADII

WHERE TIMBER IS TO BE CURVED, SPACE PEGS TO HOLD EDGE TO A

ast Council	STANDARD DRAWING		
PE SERIES	DRAWING NUMBER	REV -	
EDGES	SHEET 1 OF 2	A3	

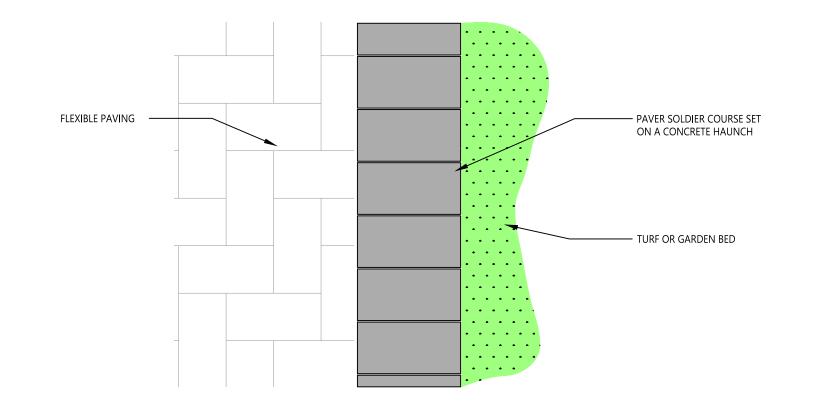
SCALE 1:10

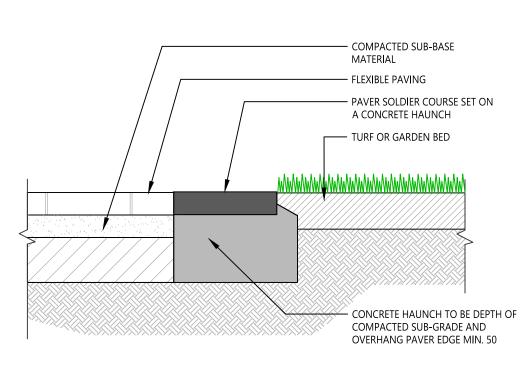
GENERAL NOTES

- 1. ENSURE MOWN HEIGHT OF GRASS (TURF) AREAS FINISH FLUSH WITH EDGING.
- 2. ENSURE GARDEN AREAS (MULCH) FINISH FLUSH WITH ADJACENT FINISH SURFACE LEVELS OF GARDEN EDGING.

CONCRETE NOTES

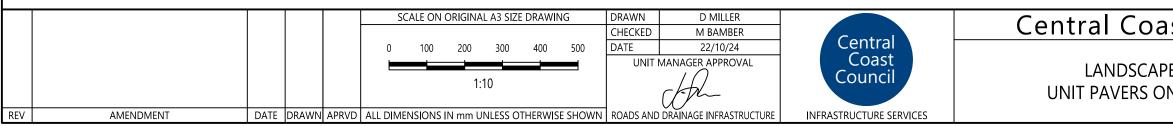
- ALL MACHINE PLACED (EXTRUDED) CONCRETE TO BE GRADE S32. INSTALL CONTRACTION JOINTS AT 4m INTERVALS BY FORMING GROOVES 40 DEEP BY 6 WIDE TO ALL EXPOSED SURFACES NORMAL TO THE ALIGNMENT OF THE KERB.
- 2. ALL CONCRETE FOR HAUNCHES UNDER PAVERS TO BE GRADE N25. CLASS 2 FINISH FOR EXPOSED FACE.

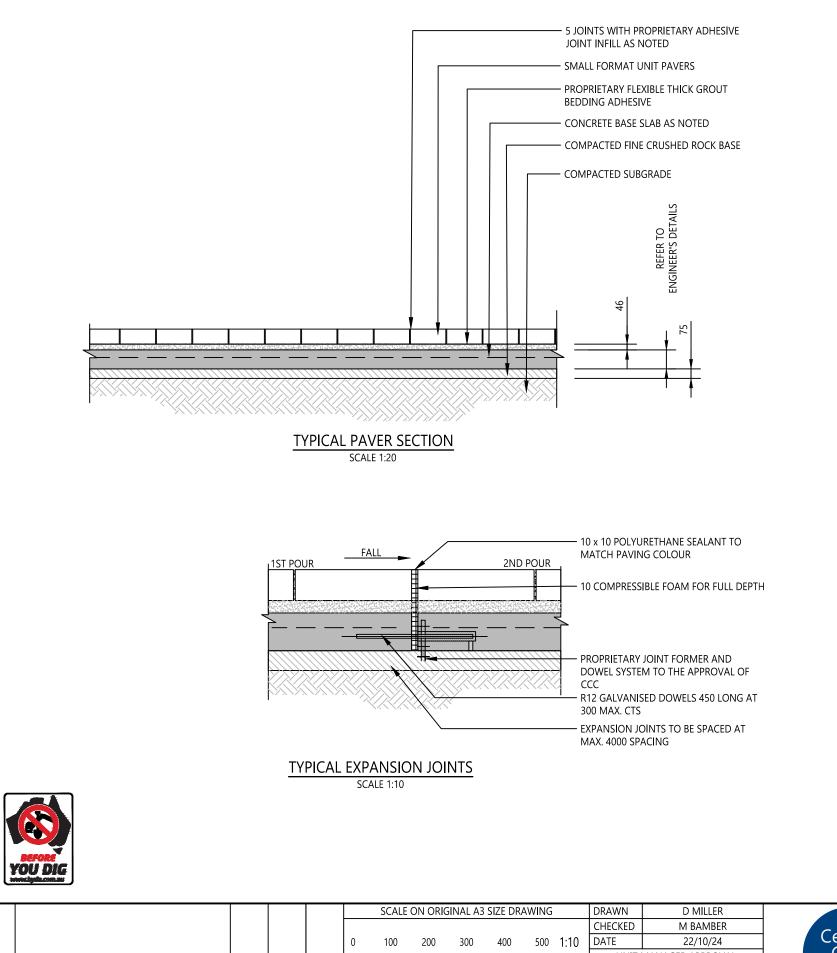

			1	1	SCALE ON ORIGINAL A3 SIZE DRAWING	DRAWN	D MILLER		
					SCALE ON ORIGINAL AS SIZE DRAWING	CHECKED	M BAMBER		Central Coa
					0 100 200 300 400 500	DATE UNIT I	22/10/24 MANAGER APPROVAL	Central Coast Council	LANDSCAP GARDEN
REV	AMENDMENT	DATE	DRAWN	APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOW	N ROADS AND	DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES	



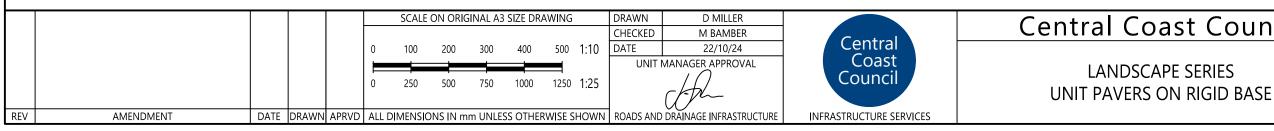
ast Council	STANDARD DF	RAWING
PE SERIES	DRAWING NUMBER	REV -
EDGES	SHEET 2 OF 2	A3

NOTES


- 1. ALL CONCRETE FOR HAUNCHES UNDER PAVERS TO BE GRADE N25.
- 2. REFER TO APPROVED LANDSCAPE AND ENGINEERING DRAWINGS FOR PAVER TYPE.

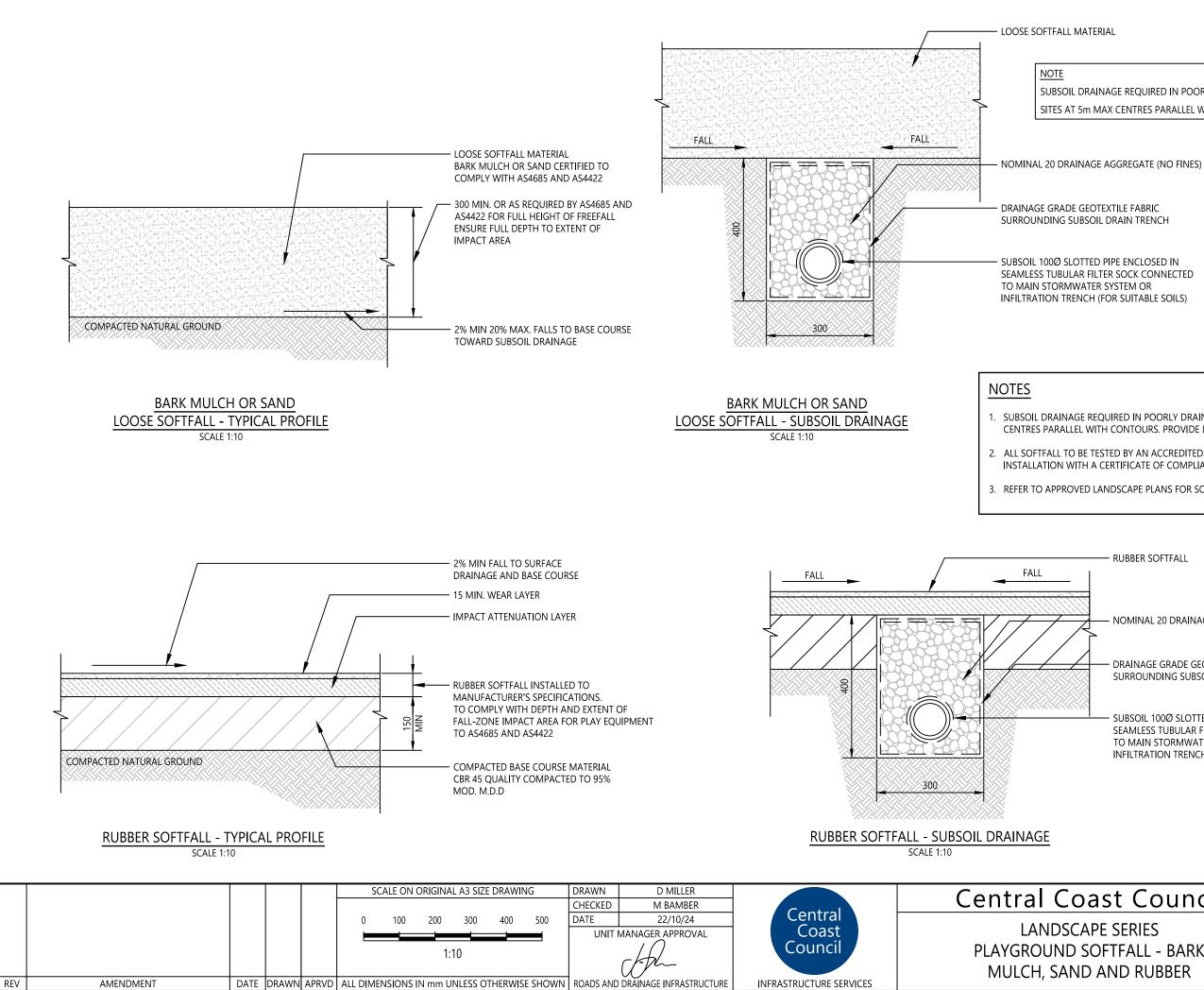

PLAN PAVER EDGING TO GARDEN, SOFTFALL OR TURE SCALE 1:10

SCALE 1:10



ast Council	STANDARD DRAWING		
	DRAWING NUMBER	REV	
PE SERIES	SD1016	-	
ON RIGID BASE	SHEET 1 OF 2	A3	

NOTES


- 1. ALL WORKMANSHIP AND MATERIAL SHA STANDARD'S IN PARTICULAR AS 3600 AN
- 2. PAVEMENT IS TO BE FOUNDED ON FIRM ANY SOFT AREAS ARE TO BE REMOVED A MINIMUM OF 100kPa ALLOWABLE BEARI
- 3. ANY FILL MUST BE PLACED IN I50 THICK RELATIVE DRY DENSITY OF 98% TO AS 12
- THE BASE COURSE IS TO BE GRANULAR O 4.
- HARDSTANDS GENERALLY TO BE DESIGN 5. DRAINED SITE MAY REQUIRE SUB SURFAC
- 6. THE FINISHED LEVEL OF ANY PAVEMENT PROOF COURSE AND MUST NOT OBSCUI
- DOWELS ARE TO BE ACCURATELY ALIGNE 7. THE PAVEMENT CENTRE LINE. ALL DOWE
- 8. POLYURETHANE / SILICONE SEALANT TO
- CONCRETE THICKNESS, GRADE, REINFOR 9.
- PREPARATION AND INSTALLATION OF BE 10. ACCORDANCE WITH THE PAVER MANUF.
- 11. TOLERANCE 3mm MAX CHANGE IN HEIGH
- HARDSTAND PAVEMENT IS DESIGNED FO 12. VEHICLES NOT EXCEEDING 3T). SEEK FUR EXCEEDING 3T.
- 13. E-MESH RECYCLED FIBRE REINFORCEMEN ALTERNATIVE TO STEEL REINFORCEMENT ENGINEER'S PRIOR TO INSTALLATION.

ALL COMPLY WITH THE CURRENT AUSTRALIA ND AS 3727.	N		
NATURAL CUT GROUND OR COMPACTED FI AND REPLACED WITH COMPACTED FILL TO M ING PRESSURE.			
MAXIMUM LAYERS AND COMPACTED TO A 289.5.1.1.			
GRADED MATERIAL, SUCH AS FINE CRUSHED	ROCK.		
IED TO HAVE A 2.5% CROSS FALL. POORLY CE DRAINAGE TO PROTECT PAVEMENT.			
ABUTTING A WALL MUST BE BELOW THE DA RE ANY WEEP HOLES OR DRAINAGE OPENIN			
ED PARALLEL TO THE PAVEMENT SURFACE A ELS AND JOINT FORMERS ARE TO BE GALVAN			
MATCH PAVING COLOUR TO TOP 10mm JO	NT.		
CEMENT AND COVER TO ENGINEER'S DETAIL	.S.		
EDDING AND PAVERS IS TO BE IN STRICT ACTURER'S SPECIFICATIONS.			
HT EACH SIDE OF JOINT.			
DR LIGHT DUTY TRAFFIC LOADING (OPERATIC THER ENGINEERING ADVICE FOR TRAFFIC LO			
NT OR EQUIVALENT IS TO BE CONSIDERED AS T IN SUITABLE SITUATIONS, CONFIRM WITH (
st Council	STAN	DARD DR	AWING
	DRAWIN	G NUMBER	REV
E SERIES	SD10	16	-

UMBER	REV
5	-
DF 2	A3

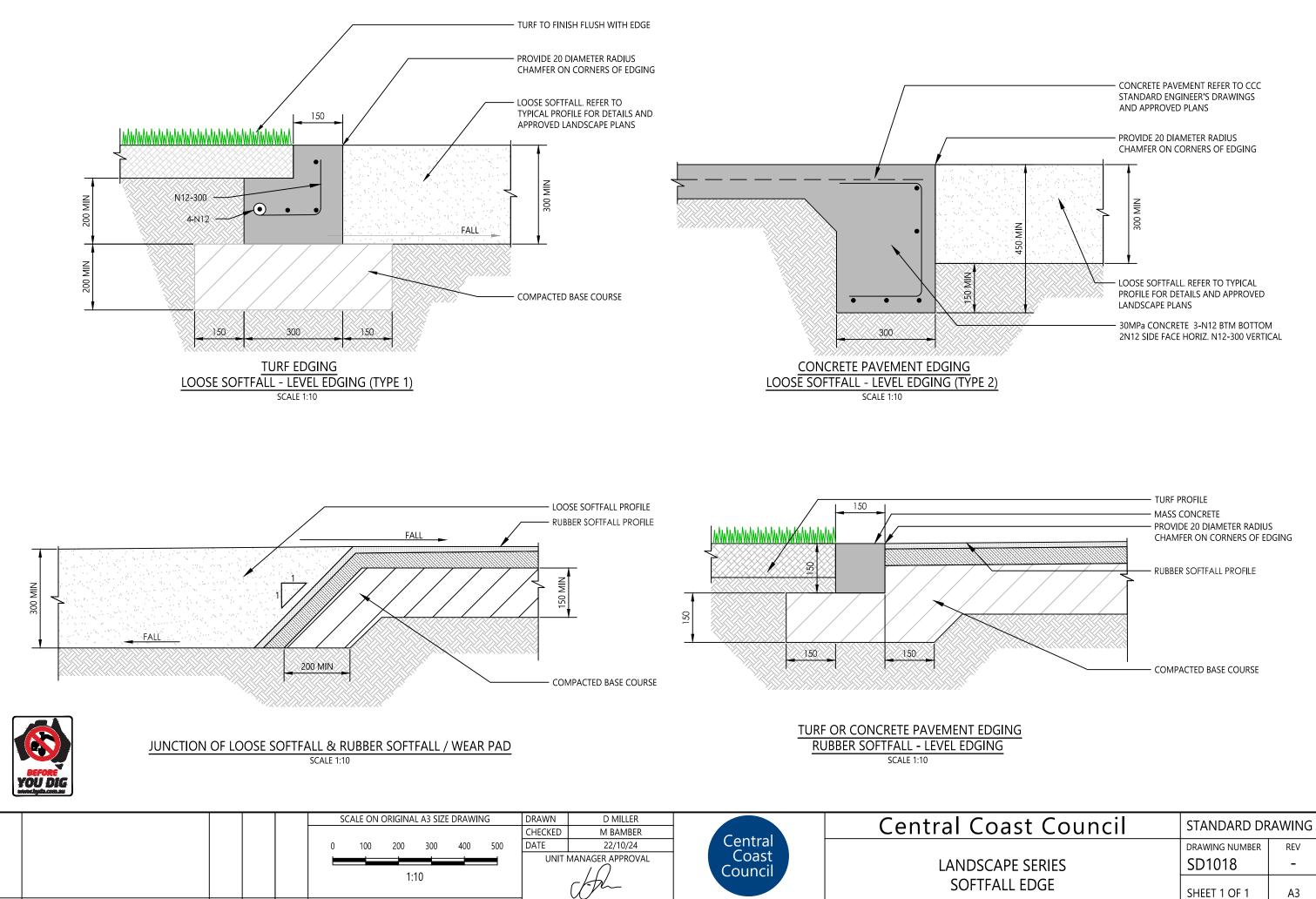
SHEET 2 OF 2

SUBSOIL DRAINAGE REQUIRED IN POORLY DRAINED SITES AT 5m MAX CENTRES PARALLEL WITH CONTOURS

QUIRED IN POORLY DRAINED SITES AT MAXIMUM 5m	
TH CONTOURS. PROVIDE LAYOUT PLAN FOR CCC APPROVAL.	

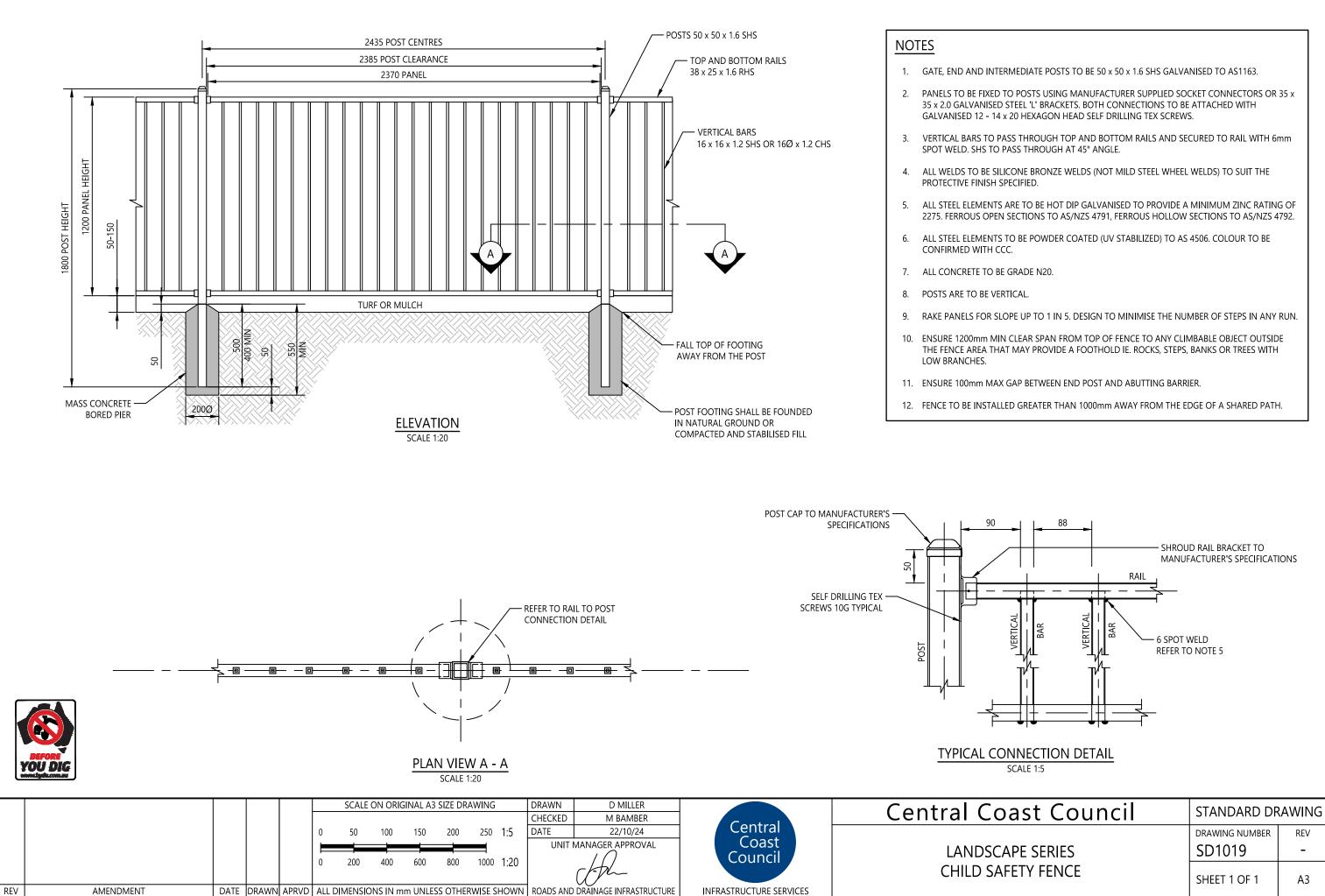
2. ALL SOFTFALL TO BE TESTED BY AN ACCREDITED SOFTFALL TESTER AT THE TIME OF INSTALLATION WITH A CERTIFICATE OF COMPLIANCE TO BE ISSUED TO CCC.

3. REFER TO APPROVED LANDSCAPE PLANS FOR SOFTFALL SCHEDULES.


- RUBBER SOFTFALL

- NOMINAL 20 DRAINAGE AGGREGATE (NO FINES)

DRAINAGE GRADE GEOTEXTILE FABRIC SURROUNDING SUBSOIL DRAIN TRENCH


SUBSOIL 100Ø SLOTTED PIPE ENCLOSED IN SEAMLESS TUBULAR FILTER SOCK CONNECTED TO MAIN STORMWATER SYSTEM OR INFILTRATION TRENCH (FOR SUITABLE SOILS)

st Council	STANDARD DRAWING		
E SERIES DFTFALL - BARK	DRAWING NUMBER	REV -	
AND RUBBER	SHEET 1 OF 1	A3	

AMENDMENT	DATE	DRAWN	APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN	ROADS AND DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES

REV

CENTRAL COAST COUNCIL'S SOIL SPECIFICATIONS

Summary of Expected Actions and Responsibilities

Section	Action	Responsibility
1	Identification of Soil Resources (Survey of soil type, depth of topsoil and subsoil, chemical and physical properties)	 Head Contractor or Soil Scientist engaged by Head Contractor Records to be kept by Head Contractor
2	Assessment of Soil Suitability	 Head Contractor to develop a plan or engage a Soil Scientist to do so Records and evidence to be kept by Head Contractor Soil Scientist to provide amelioration advice
3	Identification of Landscape Types	Developer, Consultant and Council to define landscape types and 'value'
4	Soil Specifications	 Developer, Consultant and Council to define which landscape types are applicable Head contractor to understand testing requirements
5	Stripping and Stockpiling Plan	 Head Contractor or Contractor conducting bulk earthworks, advice from soil scientist where needed. Records to be kept by both Contractors.
6	Topsoil Amelioration Process	Landscape Contractor to execute recommendations on site Landscape Contractor to keep records of inputs and process
7	Certification and Validation	 Landscape Contractor to conduct sampling or engage a Soil Scientist to do so Soil Scientist to provide interpretation / sign off / additional amendments Landscape Contractor to keep record of certification or conduct corrective actions (and record of input)
8	Subgrade Preparation	Head Contractor or Landscape Contractor
9	Topsoil Spread	 Landscape Contractor to execute Landscape Contractor to keep records of quantities.

1.0 Identification of Site Soil Resources

- 1.1. When control of the site is taken over by the Head Contractor, any areas identified to have potential for site soil recovery for re-use must be assessed for depth and composition. Soil profiles on site must be assessed to determine the depth of A Horizons (Topsoil), B Horizons (Subsoil) and C Horizons (Bedrock) if present.
- 1.2. Soil Horizon categories are typically identified by the following;
- a. Horizon is a valuable resource and can be (in most cases) easily re-used on-site with some amelioration. Typically, the A Horizon is an organic, friable loam material with vegetation arowing within.
- Horizon can also be re-used as subsoil in landscaping applications; however, must be stripped b. and stockpiled separately to allow for specific treatment. B Horizon tends to have a higher clay content, nil or no organic matter and can be brightly colored.
- Horizon is rarely economically viable for re-use in landscaping and is typically used for fill. However, where A or B Horizon cannot be utilised on site. C Horizon may be amended into a useable topsoil. C Horizons, if encountered, tend to be rocky, (shale / sandstone) and may be difficult to penetrate.
- 1.3. The re-use of site soils is to be undertaken unless they are found to be unsuitable to avoid the disposal of soil as general solid waste and the need for importation of new soil.
- 1.4. For small sites (<1 ha), a suitably gualified representative from the Head Contractor may carry out a simple assessment of soil depths of A/B and C Horizons, prior to establishing the stripping depth and/or providing estimates of recovered soil volume. Where the Head Contractor is not able to define these characteristics, a Soil Scientist is to be engaged. A minimum of 3 investigation boreholes is to be conducted across the site in areas of variable slope and terrain to gain an accurate assessment.
- 1.5. For sites with a development footprint of >1 ha, a suitability qualified soil scientist is to be engaged to characterise soils across the area and provide a stripping guide for the site. Soils can differ in quality, composition, and limitations across larger areas, and may require separation during the stockpile process to allow for different amelioration practices to be applied. Separation of stockpiles of poorer quality are to be delineated from those of higher quality.
- 1.6. The Head Contractor is required to maintain a record of measured topsoil / subsoil depth from each borehole constructed in the investigation. Once A and B horizons have been identified, estimates may be made for the recoverable soil volume and estimated stripping depth.
- 1.7. The Head Contractor is required to be aware of what the B Horizon characteristics are and that B Horizons are to be stripped and stockpiled separately to topsoil material.
- 1.8. Protect the site from unnecessary damage to soils during early site works. During initial site investigations, minimise disturbance to the site as far as possible by limiting driving heavy machinery uncontrolled earth movements and installations. Limit site installations to site sheds and access roads and prevent free access movement of all vehicles. Fence to prevent illegal waste dumping.

2.0 Assessment of Soil Suitability

Soil Sampling

2.1. All topsoil that is to be re-used or imported to site must be surveyed, sampled and analysed to determine suitability. Soil samples are to be submitted to a NATA accredited soil laboratory. Results produced by the laboratory must be reviewed and interpreted by a suitably gualified Soil Scientist.

The Soil Scientist is required to provide a report outlining any non-compliance's with the relevant soil specifications and provide amelioration advice to achieve a fit for purpose soil for landscaping use.

- 2.2. It is the responsibility of the Head Contractor to engage the services of the Soil Scientist during the project and retain records. The Landscape Contractor is required to follow the amelioration advice provided by the soil scientist, and retain records of treatment inputs.
- 2.3. Soil is to be sampled in-situ (prior to stripping) or, if not already tested, then within the stockpile. In the instance soils are to be imported to site, the Head Contractor must contact soil suppliers for representative samples of the product for analysis.
- 2.4. Soils are to be tested at a minimum frequency of one composite soil sample per 750m3 of material. A composite sample is defined as a large (3L) bag of soil that is made up of 5 -10 smaller sub-samples, mixed to make a sample for testing (SFT). The calculated number of samples required for testing is to be rounded up, rather than down.

Testing Suites

- 2.5 Samples for testing must be analysed for the most relevant suite of analysis provided in Section 4. In the instance that the landscape situation and associated value is not established, clear or otherwise unknown, it is the responsibility of the Head Contractor and Developer to confirm with Council what suite is best fitting.
- 2.6. The Head Contractor is to conduct soil sampling (or engage a subcontractor to do so) based on the identified landscape situation and associated value. Samples are to be submitted to a NATA accredited laboratory for analysis.

Subgrade / Subsoil Characterisation

- 2.7. Once topsoil is stripped and stockpiled, the shallow depths of exposed subsoil is to be to determine if the subsoil is free of chemical and physical limitations and will be supportive of landscape establishment. It is the responsibility of the Head Contractor to conduct sampling and engage a Soil Scientist to conduct the soil sampling
- 2.8. Recovered B Horizon may be used for subsoil (below 300mm) backfill for tree pits, however must be tested to the requirements of the specifications in Specification 4 - Tree Pits, Low Value, Below 300mm (B Horizon), ameliorated and re-installed as per the detail drawings.
- 2.9. Where topsoil is to be spread on top of exposed B or C Horizon or jumbled mixes of these, it is required that such subgrade be characterised prior to installation. Mixed subgrade horizons are to be sampled at 1 composite sample per 1/2 ha. Subgrade and subsoil material must be tested to the requirements presented in Specification 11 - Subgrade Specification, and the process outlined in Section 6 is to be carried out.
- 2.10. The Head Contractor is to engage a Soil Scientist for amelioration advice using the results from the aboratory analysis.

Interpretation of Results and Recommended Amelioration

- 2.11. Results are to be obtained from the laboratory for each of the required analysis outlined in Section 4 and to be presented to a suitably qualified Soil Scientist for review. The Soil Scientist must identify the non-compliances and limitations of the soil and provide an amelioration plan that may be executed by the Head or Landscape Contractor to achieve a fit for purpose soil. Where available, the contractor is to supply a species list and details to the Soil Scientist so that amelioration advice can be tailored specifically to the project and selected species.
- 2.12. It is the responsibility of the Landscape Contractor to read and fully understand the requirements of the amelioration advice and conduct the amelioration as per the report. Where products prescribed by the Soil Scientist cannot be sourced or are economically unfeasible, the contractor must seek the advice of the Soil Scientist to determine a suitable substitute.

3.0 Identification of Landscape Types

- 3.1. The Developer is to define and confirm with Council what landscapes are to be established across the site prior to the assessment of suitability. It is the responsibility of the Developer to identify how the value of landscapes are to be allocated to each landscaping area.
- 3.2. Definition of landscape units to determine Specification Type and testing requirements is outlined in the following table

Landscape Unit	Description
High Value	Best described as landscape areas of high value. Situations include landscapes that are in constant view of the public, with the expectation of fast growth and long-lasting visual impact. Examples would be landscapes around shopping centers, parks, high-rises, display beds, roa verges, entrances and other frequently visited or viewed areas. Soil types used within high value applications are expected to have high nutrient levels for sustained optimum growth.
Low Value	Best described as landscapes of lesser value. Situations include landscapes that are less frequented and expected to support vegetation, but instant impact is not critical and maintenance is minimal. Examples would be mass planting areas within residential developments, revegetation and buffer spaces, riparian areas and other less frequented areas. Soil types within low value applications are expected to have reasonable (but not high) nutrient levels that are supportive of long-tern growth.

Landscape Unit	Description
General Mass Plantings	Landscapes containing plantings of generalist species (native and/or exotics) which are imported as smaller tube stocks. Establishment is typically slow. Topsoil depth ranges from 200 – 300mm and may be overlaying subsoil or subgrade material. Planting pallets are typically grasses, woody and herbaceous perennials with reasonably low nutrient requirements. Planting methods are typically direct seeding, tubes and plant stock up to 45L.
Advanced Tree Plantings	Landscapes supporting larger specimens (45L or more). Pits are dug into the soil (typically 600mm in depth), backfilled with A and B Horizons and drainage. Advanced tree plantings are defined as excavated holes with ameliorated topsoil and subsoil reinstalled in the correct order. Tree vaults are a higher level of engineered systems such as Stratavaults, Cell Systems, Structural soils or otherwise. Soil types used within high value applications are expected to have high nutrient levels for sustained optimum growth.
High Traffic	Areas of significant foot traffic and regular use. Areas typically include public spaces, near entrances, parks and other areas where people are expected to walk on grassed areas. Soil type is expected to be a well-drained sand which is resistant to compaction with some organic matter. This definition does not include applications for sportsfields.
Low Traffic	Areas of lesser foot traffic and only occasional recreational passive use. Areas are typically grassed mounds, street verges, residential lawns, nature strips and other areas where grasses are being established and people are rarely expected to walk on. Soil type is expected to be a well-drained sand with organic matter.
Under Pavement Structural Soils / Soils with Aggregates	Horticultural landscapes installed under footpaths, structures or buildings. It is expected that the soil resource for growing plants is partially or fully covered by these structures. Soil systems consisting of large aggregates and 'filler soil', allowing for the support of structures / footpaths and horticultural landscapes.
Cell Systems	Soil systems, usually constructed from high strength plastic that are filled with soil allowing for the support of structures / footpaths and
Raingarden	horticultural landscapes. Garden beds comprising of various sand and gravel materials designed specifically for the removal of nutrient from stormwater. Stormwater is typically diverted into these systems for filtration prior to release into stormwater lines. The secondary purpose of raingardens is to support the growth of riparian species, which facilitate further nutrient removal.

4.0 Soil Specification

- 4.1. References in this specification to Appendix A and associated Tables are to be sourced from Soils for Landscape Development Leake and Haege 2014. AS4419:2018 Soils for Landscaping and Garden Use is the relevant Australian Standard to be referenced in this specification.
- 4.2. The following Soil Specification Types include;
 - 4.2.1. Specification 1 General Mass Plantings, Low Value: Requires testing to AS4419:2018 Table 1 -Landscape Soils (On Grade) and additional testing for texture and structure. The soil must fit into the criteria of at least one category within AS4419:2018 Table 1, be friable in nature and have an estimated infiltration >20 mm.
 - 4.2.2. Specification 2 General Mass Plantings, High Value: Requires testing to specification D2 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in Appendix A - Table 1.
 - 4.2.3. Specification 3 Tree Pits, Low Value, Top 300mm (A Horizon): Requires testing to AS4419:2018 Table 1 - Landscape soils (On Grade) and additional testing for texture and structure. The soil must fit into the criteria for the Medium Organic Matter category within AS4419:2018 Table 1, be friable in nature and have an estimated infiltration >20 mm.
 - 4.2.4. Specification 4 Tree Pits, Low Value, Below 300mm (B Horizon): Requires testing to AS4419:2018 Table 1 - Landscape soils (On Grade) and additional testing for texture and structure. The soil must fit into the criteria for the 'Low Organic Matter' category within AS4419:2018 Table 1, with organic matter ≤ 3%, be friable in nature and have an estimated nfiltration >20mm
 - 4.2.5. Specification 5 Tree Pits, High Value, Top 300mm (A Horizon): Requires testing to specification D2 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in Appendix A - Table 2.
 - 4.2.6. Specification 6 Tree Pits, High Value, Below 300mm (B Horizon): Requires testing to AS4419:2018 Table 1 - Landscape soils (On Grade) and additional testing for texture and structure. The soil must fit into the criteria for the 'Low Organic Matter' category within AS4419:2018 Table 1 with organic matter ≤ 3%, be friable in nature and have an estimated infiltration >20 mm.
 - 4.2.7. Specification 7 Tree Pits Under Pavement Cell Systems: To be applied only in the instance that there is no previous, system specific soil specification from the manufacturer. Specification 7 requires testing to Specification D2 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in Appendix A - Table 3
 - 4.2.8. Specification 8 Tree Pits Under Pavement Structural Soils with Aggregates: To be applied only in the instance that there is no previous, system specific soil specification from the manufacturer. Specification 8 requires testing to specification F1 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have bee

				SCALE ON ORIGINAL A3 SIZE DRAWING	DRAWN	D MILLER		Control Coast Council	STANDARD DR	
					CHECKED	M BAMBER	Constant	Central Coast Council		AWING
					DATE	22/10/24	Central		DRAWING NUMBER	REV
				NOT TO SCALE	UNIT	MANAGER APPROVAL	Coast Council	LANDSCAPE SERIES	SD1020	-
						the		SOIL SPECIFICATIONS	SHEET 1 OF 3	A3
REV	AMENDMENT	DATE	DRAWN APR\	D ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWI	N ROADS AND	D DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES			

provided in Appendix A - Table 4.

- 4.2.9. Specification 9 Turf, Low Traffic: Requires testing to specification C1 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in tables Appendix A - Table 5.
- 4.2.10. Specification 10 Turf. High Traffic: Requires testing to specification C2 within Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in Appendix A - Table 6. This specification is not intended for sportsfield use. Specification 11 - Subgrade Specification: Requires testing to a simplified version of specification B3 Soils for Landscape Development Leake and Haege 2014. The required analysis and target ranges have been provided in Appendix A - Table 7.

Stripping and Stockpiling

- 5.1. Stripping and stockpiling of topsoil is to occur immediately before bulk earthworks and be done in such a manner that minimises erosion and sediment loss from site. Ensure that rubbish and foreign matter is removed in the stripped soil. It is the responsibility of the Head to ensure stripping and stockpiling is conducted correctly.
- 5.2. Stockpiles must be in a convenient place away from any risk of running water and subject to suitable erosion control measures. They must be protected from contamination during the construction process and records kept of their location and type of soil contained.
- 5.3. The following table provides a summary of the stripping and stockpiling process required on site.

Landscape Unit	Description
Preparation	 Clear all debris including demolition waste, timber, rubbish wire fences, rock, graveled driveways, etc. Clear trees and shrub growth and slash if necessary. Clear trees, pasture and weed growth. If heavy or otherwise a problem, spray with a broad-spectrum herbicide at manufacturer's rates and allow 1–2 weeks to obtain kill before stripping. Obtain Specific advice on weed control.
Stripping	 5. Avoid the inclusion of subsoil in topsoil stripping, adjust depth accordingly. Strip to the recommended depths and generally stop stripping if the more brightly coloured or more clayey subsoil starts showing. 6. Strip topsoil to depths as defined from the process in Section 1 including all surface leaf litter, plants and grasses.
Locate stockpiles in a convenient location	Locate stockpiles 5m or more from concentrated water flows (including drainage lines, roadways). Locations should have less than 10% slope. Locate greater than 8m from any retained trees. Protect upslope using diversion drains. Protect downslope sediment loss using sediment control structures (silt fencing or other approved method).
Management	 Stockpiles must never be trafficked. Fence stockpiles to exclude all vehicles. Stockpiles must be no higher than 2m but may be flat topped. Where space is limited within the site footprint, stockpiles may be higher than 2m (to a maximum of 4 m), however batters of the stockpile must remain at a slope of 2:1. Stockpiles may be flat topped if required. Label stockpiles with origin, soil type and date. Protect stockpiles from waste and rubbish dumping and encroachment of works. If stockpiles are to be in place longer than 3 months, sow with a seasonally appropriate annual cover crop.

6.0 Topsoil Amelioration

- 6.1. It is the responsibility of the Landscape Contractor to conduct amelioration on site (or ensure soils are ameliorated prior to import to site). The method for ameliorating soils on-site is at the discretion of the contractor and it is expected to be carried out in the most economical, but effective manner possible. As a guide, two common methodologies for on-site amelioration for consideration include;
 - 6.1.1 In-Situ Amelioration: For soils that are to be ameliorated in-situ (i.e not stripped and stockpiled, left in place). The following process can be carried out:
 - Determine topsoil depth and amelioration depth (typically 100mm)
 - Prepare area by spraying cover crop and weeds (if required).
 - If possible, rip topsoil and subsoil to a maximum depth possible with available machinery (it is important to note ripping is not to be confused with cultivating - subsoil and topsoil materials are not to be mixed together).
 - Surface apply amendments such as sand, compost, gypsum or lime (not fertilisers) at the prescribed g/m2.
 - Cultivate (using a disc plough or otherwise) into the top 100mm to incorporate amendments.
 - Surface apply fertilisers at the prescribed a/m2.

- 6.1.2 Stockpile Amelioration: For soils that have been stored in stockpile (i.e. stripped and stockpiled onsite during earthworks) the following process are be carried out:
- Prepare stockpile by spraying cover crop and weeds (if required). • Break down the stockpile in known volumes with an excavator or front-end loader, creating

smaller piles of known volume. • Screen material with a screening bucket.

- Apply amendments such as sand, compost, gypsum or lime (not fertilisers) at the prescribed a/m3.
- Thoroughly mix amendments into the soil.
- Spread topsoil in the specified location, at the required depth.
- Surface apply fertilisers at the prescribed g/m2.

7.0 Topsoil Certification and Validation

- 7.1. After topsoil has been ameliorated (regardless of in-situ or stockpile), the soil material must be validated to ensure the amelioration has been carried out in an effective manner. Ameliorated soil is to be sampled and analysed for the nominated Soil Specification Type. It is the responsibility of the Landscape Contractor to engage a Soil Scientist to collect samples and provide interpretations.
- 7.2. The same process outlined in Section 2 are to be carried out, however soil may be sampled at 1 composite sample per 1,000m3.
- 7.3. An appropriately qualified Soil Scientist is required to review the laboratory results and provide commentary on whether the soil may be considered 'fit for purpose' or any additional amelioration is required.

8.0 Subgrade Preparation

- 8.1. Exposed subgrade or recovered subsoil from stockpiles are to be treated in-situ or as it is exploited from the stockpile. Records and evidence of amelioration of subgrade and subsoil treatment must be provided.
- 8.2. The method for cut, fill and amendment of subgrade / subsoil on-site is at the discretion of the Head Contractor and it is expected to be carried out in the most economical, but effective manner possible. 8.3. The required steps for subgrade / subsoil preparation and amelioration for areas to have topsoil
- spread are as follows (Note this process does not apply to subsoil backfill for tree vaults or larger stock):
- 1. Fair and trim to relative level to accommodate the required overall soil depths. 2. Remove rocks >50 mm diameter.
- 3. Remove rubbish such as construction generated waste, plastics, metals and glass. 4. Deep rip to a maximum depth allowable by available machinery.
- Apply ameliorants as per the Soil Scientist's reports.
- 6. Chisel, disc plough or use an excavator with a tyne attachment to loosen the subgrade and mix the ameliorants to 200 mm depth to incorporate.
- 8.1. Where stockpiled recovered subsoil is applied to cut subgrade, the subgrade shall not be compacted to more than about 70-80% proctor compaction rate. The recovered subsoil from stockpile can be treated in-situ after spreading in the manner described above. It is important to avoid excessive compaction of subsoils and to relieve compaction if it occurs prior to placing topsoil.

9.0 Topsoil Spread and Preparation for Planting

- 9.1. Validated ameliorated topsoil is to be spread by the Landscape Contractor where required at the nominated depth. Processed topsoil compliant to the specifications is prone to compaction and it is imperative that the following considerations are made when spreading topsoil and preparing for $% \label{eq:constraint}$ planting:
 - 1. Under no circumstances, is topsoil to be compacted by any means beyond light 'firming'. 2. If soils are required to be stabilised due to slope, water runoff or otherwise, specified erosion control measures are to be installed immediately after topsoil spread.
 - 3. All vehicle traffic, inclusive of light vehicles, machinery or otherwise is to be excluded from areas with topsoil that has been spread.
 - In the event that compaction is unavoidable due to site operations, it is the responsibility of the Landscape Contractor to relive soil compaction by tyning or cultivation prior to planting.
 - 5. Plants and/or cover crops are to be installed as soon as practicably possible after topsoil spread

Table 1: Specification 2 – General Mass Plantings, High Value				Table 2: Specification 5 – Tree Pits, High Value,	Top 300mm (A H	lorizon)			
Physical Properties				Physical Properties					
Property	Units	Range	Property	Units	Targe	Target Range			
Texture, preferred range ¹	n/a	n/a Sandy loam to clay loam		Texture, preferred range ¹	n/a	Sandy	loam to clay loam		
Organic matter ²	% dwb	3-6		Organic matter ²	% dwb	3-6			
Permeability (@ 16 drops by McIntyre Jakobsen) ³	mm/h	> 30		Permeability (@ 16 drops by McIntyre Jakobsen)	mm/h	> 30			
Wettability ⁴	mm/h	> 5		Wettability ⁴	mm/h	> 5			
Dispersibility in water ⁷	Class	> 4	Emerson Aggregate Class	Dispersibility in water ⁷	Class	> 4	Emerson Aggregate Class		
Large particles (naturally occurring) ⁴				Large particles (naturally occurring) ⁴	Cluss		Enterson riggi egate elass		
2–20 mm	% w/w	< 20		2–20 mm	% w/w	< 20			
> 20 mm	% w/w	< 10		> 20 mm	% w/w	< 10			
Visible contaminants > 2 mm (glass, plastic and metal) ⁵	%w/w	< 0.5		Visible contaminants > 2 mm (glass, plastic and metal) ⁵	%w/w	< 0.5			
Chemical Properties				Physical Properties					
Property	Units	Target	Range	Property	Units	Tarae	t Range		
pH in water (1:5) standard range ⁶	pH units	5.4-6.8	3	pH in water (1:5) standard range ⁶	pH units	5.4-6.8			
pH in CaCl2 (1:5) standard range ⁶	pH units	5.2-6.5	5	pH in CaCl2 (1:5) standard range ⁶	pH units	5.2-6.			
Electrical conductivity (1:5) ⁶	dS/m	< 0.65		Electrical conductivity (1:5) 6	dS/m	< 0.65			
Phosphorus – P-sensitive plants. Acid soils method ⁶	mg/kg	< 30		Phosphorus – P-sensitive plants. Acid soils method ⁶	mg/kg	< 30			
Phosphorus – P-Tolerant plants. Acid soils method ⁶	mg/kg	30-60		Phosphorus – P-Tolerant plants. Acid soils method ⁶	mg/kg	30-60			
Exchangeab l e sodium (Na) ⁶	% of ECEC	< 7%		Exchangeable sodium (Na) ⁶	% of ECEC	of ECEC < 7%			
Exchangeable potassium (K) ⁶	% of ECEC	5-10%		Exchangeable potassium (K) ⁶					
Exchangeable calcium (Ca) ⁶	% of ECEC	60–80			% of ECEC	5-10%	0		
Exchangeable magnesium (Mg) ⁶	% of CEC	15–25		Exchangeable calcium (Ca) ⁶	% of ECEC 60–80				
Exchangeable aluminium (Al) ⁶	% of CEC	< 2		Exchangeable magnesium (Mg) ⁶	% of CEC	15-25			
Exchangeable Ca/Mg ratio ⁶	ratio	3–9		Exchangeable aluminium (Al) ⁶	% of CEC	< 2			
Available iron (Fe) ⁶	mg/kg	100-40	00	Exchangeable Ca/Mg ratio ⁶	ratio	3-9			
Available manganese (Mn) ⁶	mg/kg	25-100)	Available iron (Fe) ⁶	mg/kg	100-4	00		
Available zinc (Zn) ⁶	mg/kg	5-30		Available manganese (Mn) ⁶	mg/kg	25–10	0		
Available Copper (Cu) ⁶	mg/kg	1–15		Available zinc (Zn) ⁶	mg/kg	5–30			
Available boron (B) ⁶	mg/kg	0.5–5		Available Copper (Cu) ⁶	mg/kg	1–15			
Available N (ammonium-N + nitrate-N) ⁶	mg/kg	> 25		Available boron (B) ⁶	mg/kg	0.5–5			
Method References				Available N (ammonium-N + nitrate-N) ⁶	mg/kg	> 25			

2. Rayment & Lyons 6B2

3. Rayment & Lyons (2011)

Appendix A - Soil Properties Tables

4. Soil Specification

The following tables provides the soil properties requirements for each Soil Specification type identified in

- 5. AS4454-2012 Appendix 1
- McIntyre & Jakobsen 1998
- 7. Emerson (1991)
 - 1. Texture (SESL) 4. AS4419-2018 2. Rayment & Lyons 6B2 5. AS4454-2012 Appendix 1 3. Rayment & Lyons (2011)

6. McIntyre & Jakobsen-1998

7. Emerson (1991)

SCALE ON ORIGINAL A3 SIZE DRAWING DRAWN D MILLER Central Coa M BAMBER CHECKED Central DATE 22/10/24 Coast UNIT MANAGER APPROVAL NOT TO SCALE LANDSCAP Council SOIL SPECIF DATE DRAWN APRVD ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN ROADS AND DRAINAGE INFRASTRUCTURE AMENDMENT REV INFRASTRUCTURE SERVICES

Table 3: Specification 7 – Tree Pits Under Pavement – Cell Systems

Physical Properties						
Property	Units	Target Range				
Texture, preferred range ¹	n/a	Sandy loam to clay loam				
Organic matter ²	% dwb	3-6				
Permeability (@ 16 drops by McIntyre Jakobsen) ³	mm/h	> 30				
Wettability ⁴	mm/h	> 5				
Dispersibility in water ⁷	Class	> 4	Emerson Aggregate Class			
Large particles (naturally occurring) ⁴	•					
2–20 mm	% w/w	< 20				
> 20 mm	% w/w	< 10				
Visible contaminants > 2 mm (glass, plastic and metal) 5	%w/w	< 0.5				
Chemical Properties	1					
Property	Units	Target	Range			
pH in water (1:5) standard range ⁶	pH units	5.4-6.8				
pH in CaCl2 (1:5) standard range ⁶	pH units	5.2-6.5				
Electrical conductivity (1:5) ⁶	dS/m	< 0.65				
Phosphorus – P-sensitive plants. Acid soils method ⁶	mg/kg	< 30				
Phosphorus – P-Tolerant plants. Acid soils method $^{\rm 6}$	mg/kg	30-60				
Exchangeable sodium (Na) ⁶	% of ECEC	< 7%				
Exchangeable potassium (K) ⁶	% of ECEC	5–10%				
Exchangeable calcium (Ca) ⁶	% of ECEC	60–80				
Exchangeab l e magnesium (Mg) ⁶	% of CEC	15–25				
Exchangeable aluminium (Al) ⁶	% of CEC	< 2				
Exchangeable Ca/Mg ratio ⁶	ratio	3–9				
Available iron (Fe) ⁶	mg/kg	100-40	0			
Available manganese (Mn) ⁶	mg/kg	25-100)			
Available zinc (Zn) ⁶	mg/kg	5–30				
Available Copper (Cu) ⁶	mg/kg	1–15				
Available boron (B) ⁶	mg/kg	0.5–5				
Available N (ammonium-N + nitrate-N) ⁶	mg/kg	> 25				

Method References

1. Texture (SESL)

2. Rayment & Lyons 6B2

- 4. AS4419-2018
- 5. AS4454-2012 Appendix 1
- 6. McIntyre & Jakobsen-1998
- 7. Emerson (1991)

3. Rayment & Lyons (2011)

st Council	STANDARD DRAWING			
E SERIES	DRAWING NUMBER	REV _		
ICATIONS	SHEET 2 OF 3	A3		

Table 4: Specification 8 – Tree Pits Under I	Pavement – Structu	ıral Soils with Aggregates – Filler Soils	Table 5: Specification 9 – Turf, Low 1	Traffic		Table 6: Specification 10 – Turf, Hig	h Traffic		Table 7: Specification 11 - Subgrade Spe	ecification	
Physical Properties			Physical Properties			Physical Properties			Physical Properties		
		T	Property	Units	Target Range	Property	Units	Target Range	Property	Units	Target Range
Property	Units	Target Range	2.0 mm (fine gravel) ¹	% retained	< 10	2.0 mm (fine gravel) ¹	% retained	< 10	Texture, preferred range ¹	n/a	Loam to clay loam
exture, preferred range ¹	n/a	Sandy loam to clay loam	1.0 mm (very coarse sand) ¹	by mass	< 10	1.0 mm (very coarse sand) ¹	by mass	< 10	Texture, preferred range ¹	n/a	Required for calculation
Drganic matter ² Nettabi l ity ⁴	% dwb mm/h	3-6	0.5 mm (coarse sand) ¹		10-30 30-50	0.5 mm (coarse sand) ¹		10-30 30-50	Texture, preferred range ¹	mm/hr	> 20
Vertability	Class	> 4	0.25 mm (medium sand) ¹		20-40	0.25 mm (medium sand) ¹		20-40	Texture, preferred range 1	% dwb	< 3
arge particles (naturally occurring) ⁴	Class		0.1 mm (fine sand) ¹		10-30	0.1 mm (fine sand) ¹		10-30	Texture, preferred range 1		
ravel > 4mm4	% w/w	< 20	0.05 (very fine sand) ¹		5-15 (max 20% combined vfs, Si +Cl)	0.05 (very fine sand) ¹ 0.002 mm (silt) ¹		< 15 (max 20% combined vfs, Si +Cl) < 8 (Si + Clay combined 5–8)	Texture, preferred range 1	Units	Target Range
20 mm	% w/w	< 10	0.002 mm (silt) ¹		< 12 (Si + Clay combined 5–8)	< 0.002 mm (sitt) < 0.002 mm (clay) ¹	_	2-6	Texture, preferred range ¹ Texture, preferred range ¹	pH units pH units	5.4–6.8 5.2–6.5
isible contaminants > 2 mm (glass,	%w/w	< 0.5	< 0.002 mm (clay) ¹		3-8	Large particles ²		2–20 mm = < 2% > 20 mm = 0%	Texture, preferred range	dS/m	< 0.65
astic and metal) ⁵ hemical Properties			Large particles ² Organic matter content ⁴	% w/w	2-20 mm = < 10% > 20 mm = 0% 2 to 8	Organic matter content ⁴	% w/w	2 to 5	Texture, preferred range ¹	% of ECEC	< 7%
roperty	Units	Target Range	Permeability ³	mm/hour	> 30(@ 16 drops by McIntyre Jakobsen)	Permeability ³	mm/hour	> 50-200 (@ 16 drops by McIntyre Jakobsen)	Texture, preferred range ¹	% of ECEC	5–10%
H in water (1:5) standard range ⁶	pH units	5.4-6.8	Wettability (AS 4419) ²	mm/hour	> 5	Wettability (AS 4419) ²	mm/hour	> 5	Texture, preferred range ¹	% of ECEC	60–80
H in CaCl2 (1:5) standard range ⁶	pH units	5.2-6.5	Dispersibility in water ⁶	Class	> 4 Emerson Aggregate Class	Dispersibility in water ⁶	Class	> 4 Emerson Aggregate Class	Texture, preferred range ¹	% of CEC	15-25
ectrical conductivity (1:5) ⁶	dS/m	< 0.5	Chemical Properties	Class	24 Energine gate class	Chemical Properties	0.000	555	Texture, preferred range ¹	% of CEC	< 2
osphorus – P-sensitive plants. Acid soils	mg/kg	< 30	Property	Units	Target Range	Property	Units	Target Range	Texture, preferred range ¹	ratio	3–9
ethod ⁶	5.5	< 50	pH in water (1:5) ⁵	pH units	5.4–8.0	pH in water (1:5) ⁵	pH units	5.4-8.0	Method References	•	
nosphorus – P-Tolerant plants. Acid soils iethod ⁶	mg/kg	30-100	pH in CaCl ² (1:5) ⁵	pH units	5.2-7.5	pH in CaCl ² (1:5) ⁵	pH units	5.2-7.5		S4419-2018	6. McIntyre & Jakobsen-1
changeable sodium (Na) ⁶	% of ECEC	< 7%	Electrical conductivity (1:5) 5	dS/m	< 0.5	Electrical conductivity (1:5) ⁵	dS/m	< 0.5		S4454-2012 Appen	•
changeable potassium (K) ⁶	% of ECEC	3–10%	Exchangeable Na percentage ⁵	% of ECEC	< 7	Exchangeable Na percentage ⁵	% of ECEC	<7	3. Rayment & Lyons (2011)	co iz Appell	7. Energon (1771)
changeable calcium (Ca) ⁶	% of ECEC	60–80	Exchangeable Ca/Mg ratio ⁵	Ratio	3-9	Exchangeable Ca/Mg ratio ⁵	Ratio	3-9			
changeable magnesium (Mg) ⁶	% of CEC	15–25	Available phosphorus Mehlich 3 ⁵		50–150	Available phosphorus Mehlich 3 ⁵	mg/kg	50–150			
changeable aluminium (Al) ⁶	% of CEC	< 5	Available phosphorus Menlich 3 *	mg/kg	20–50	Available phosphorus Olsen Available nitrogen (nitrate N +		20–50	4		
changeable Ca/Mg ratio ⁶	ratio	3–9	Available nitrogen (nitrate N +	and the		ammonium N) ⁵	mg/kg	30-100			
vailable iron (Fe) ⁶	mg/kg	100–400	ammonium N) ⁵	mg/kg	20-60	Method References			-		
vailable manganese (Mn) ⁶	mg/kg	25–100	Method References				McIntyre & Jakob	sen-1998 5. Rayment & Lyons (2011)			
vailable zinc (Zn) ⁶	mg/kg	5-30		McIntyre & Jakob			Rayment & Lyons				
vailable Copper (Cu) ⁶	mg/kg	1–15	2. AS4419-2018 4.	Rayment & Lyons	6B2 6. Emerson (1991)						
	mg/kg	0.5–5									
	3. 3										
	mg/kg	> 20									
vailable N (ammonium-N + nitrate-N) ⁶	mg/kg	> 20									
vailable N (ammonium-N + nitrate-N) ⁶ nysical Properties – Aggregate Component	mg/kg	> 20 Target Range	_								
vailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty	mg/kg										
wailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0	mg/kg Units	Target Range									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 53 57.5	mg/kg Units % Passing	Target Range 100 85-100 20-65									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 33.0 33 17.5 26.5	mg/kg Units % Passing % Passing % Passing % Passing	Target Range 100 85-100 20-65 0-20									
Available boron (B) ⁶ Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 53 53 53 53 54 55 55 56 55 59,0	mg/kg Units % Passing % Passing % Passing % Passing % Passing	Target Range 100 85-100 20-65 0-20 0-5									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 37.5 26.5 19.0 13.2	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing	Target Range 100 85-100 20-65 0-20 0-5 0-2									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 37.5 26.5 19.0 13.2 4.75	mg/kg Units % Passing	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 37.5 26.5 19.0 13.2	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing	Target Range 100 85-100 20-65 0-20 0-5 0-2									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 37.5 26.5 19.0 13.2 4.75	mg/kg Units % Passing	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53.3 57.5 56.5 19.0 13.2 4.75 56.5 50.0 13.2 4.75 56.0 13.4 56.0 13.2 56.0 13.2 56.0 13.2 56.0 13.2 56.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	mg/kg Units % Passing	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1									
wailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0 3 7.5 6.5 9.0 3.2 7.5 odium Sulfate Soundness ⁹ thod References Texture (SESL) 4. Wet 1	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Weight loss	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991)									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Troperty 33.0 33 37.5 46.5 9.0 3.2 1.75 30dium Sulfate Soundness ⁹ sthod References Texture (SESL) 4. Wet 1 Rayment & Lyons 682 5. AS44	mg/kg Units % Passing % Weight loss	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 53 53 526.5 19.0 13.2 14.75 550dium Sulfate Soundness ⁹ 550dium Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 57 57 57 57 57 57 57 57 57 57 57 57 57	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
Available N (ammonium-N + nitrate-N) ⁶ Physical Properties – Aggregate Component Property 53.0 53 53 53 526.5 19.0 13.2 14.75 550dium Sulfate Soundness ⁹ 550dium Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 560dia Sulfate Soundness ⁹ 57 57 57 57 57 57 57 57 57 57 57 57 57	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
Available N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0 3.7 5.5 6.5 9.0 3.2 1.75 1.7	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
Available N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0 3.7 5.5 6.5 9.0 3.2 1.75 1.7	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
vailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0 3.7.5 6.5 9.0 3.2 7.5 odium Sulfate Soundness ⁹ thod References Texture (SESL) 4. Wet ' Rayment & Lyons 682 5. AS44	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
vailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component operty 3.0 3.7.5 5.5 0.0 3.2 75 bodium Sulfate Soundness ⁹ hod References Fexture (SESL) 4. Wet ' Rayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
vailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component operty .0 .5 .5 .0 .2 .75 .0 .2 .4 .4. Wet ' fexture (SESL) 4. Wet ' .0 .4. Wet ' .0 .5	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component sperty .0 .5 .5 .0 .2 .75 dium Sulfate Soundness ⁹ hod References lexture (SESL) 4. Wet 1 ayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ spiral Properties – Aggregate Component operty 0 5 5 5 0 2 2 5 6 0 2 6 6 7 5 6 0 7 7 6 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component perty 0 5 5 5 0 2 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 5 5 5 5 5 5 5 5 6 7 5 6 7 7 6 8 7 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component sperty .0 .5 .5 .0 .2 .75 dium Sulfate Soundness ⁹ hod References lexture (SESL) 4. Wet 1 ayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component perty 0 5 5 5 0 2 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 5 5 5 5 5 5 5 5 6 7 5 6 7 7 6 8 7 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ vsical Properties – Aggregate Component perty 0 5 5 5 0 2 5 5 5 0 2 5 5 6 0 6 6 7 7 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 8 7	mg/kg Units % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Passing % Veight loss Sieve Method 154-2012 Appendix 1	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty) 5 5 5 9 2 5 5 9 9 2 5 5 9 9 9 9 9 9 9 9	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty) 5 5 5 9 2 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty) 5 5 5 9 2 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty) 5 5 5 9 2 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
iilable N (ammonium-N + nitrate-N) ⁶ sical Properties – Aggregate Component perty 0 5 5 5 0 2 5 5 5 0 2 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ /sical Properties – Aggregate Component perty 0 5 5 5 0 2 2 5 5 0 0 2 5 5 0 0 2 5 5 0 0 2 5 5 0 0 2 5 5 0 0 2 5 5 0 0 2 2 5 5 0 0 2 2 5 5 0 0 2 2 5 5 0 0 2 2 5 5 0 0 2 2 5 5 5 0 0 2 2 5 5 5 5	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component operty 0 5 5 5 0 2 2 75 dium Sulfate Soundness ⁹ tod References exture (SESL) 4. Wet ' ayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009									
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component sperty .0 .5 .5 .0 .2 .75 dium Sulfate Soundness ⁹ hod References lexture (SESL) 4. Wet 1 ayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009	SCALE ON ORIGINAL A3 SIZE	DRAWING	DRAWN D MILLER						
vailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component roperty 3.0 3.7.5 6.5 9.0 3.2 7.5 odium Sulfate Soundness ⁹ thod References Texture (SESL) 4. Wet ' Rayment & Lyons 682 5. AS44	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009	SCALE ON ORIGINAL A3 SIZE	DRAWING	DRAWN D MILLER CHECKED M BAMBER			Central C	Coast Counc		STANDARD DRA
vailable N (ammonium-N + nitrate-N) ⁶ hysical Properties – Aggregate Component operty 3.0 3.7.5 5.5 0.0 3.2 75 bodium Sulfate Soundness ⁹ hod References Fexture (SESL) 4. Wet ' Rayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009	SCALE ON ORIGINAL A3 SIZE	DRAWING	CHECKED M BAMBER	Centra		Central C	Coast Counc	cil	
vailable N (ammonium-N + nitrate-N) ⁶ aysical Properties – Aggregate Component operty a.a a.a a.a a.a a.a a.a a.a a.a b.a. a.a b.a. b.a	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009			CHECKED M BAMBER DATE 22/10/24	Central		Central C	Coast Counc	cil	STANDARD DRA
vailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component operty .0 .5 .5 .0 .2 .75 .0 .2 .4 .4. Wet ' fexture (SESL) 4. Wet ' .0 .4. Wet ' .0 .5	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009	SCALE ON ORIGINAL A3 SIZE		CHECKED M BAMBER	Coast				cil	DRAWING NUMBER
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component operty 0 5 5 5 0 2 2 75 dium Sulfate Soundness ⁹ tod References exture (SESL) 4. Wet ' ayment & Lyons 6B2 5. AS44	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009			CHECKED M BAMBER DATE 22/10/24	Central Coast Council		LAND	SCAPE SERIES	<u></u>	
ailable N (ammonium-N + nitrate-N) ⁶ ysical Properties – Aggregate Component perty 0 5 5 5 0 2 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 5 5 5 5 5 5 5 5 6 7 5 6 7 7 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	mg/kg Units % Passing % Passing (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passing) (Passin	Target Range 100 85-100 20-65 0-20 0-5 0-2 0-1 ≤ 9 7. Emerson (1991) 8. A\$1141.11-2009			CHECKED M BAMBER DATE 22/10/24	Coast		LAND		<u>cil</u>	DRAWING NUMBER

CENTRAL COAST COUNCIL'S LANDSCAPE SPECIFICATIONS

1. Construction Preliminaries

1.1 All Contractors will undertake all work in a manner that is compliant with relevant State and National legislated Workplace Health and Safety requirements.

1.2 The specification outlines Council's minimum acceptable standard. Any variations to these

standards must be approved by Council prior to project commencement. 1.3 Project specific variations may be appropriate as a result of site environmental or other constraints. Site specific variations and solutions are to be approved by Council prior to project commencement

1.4 Before works commence, the Head Contractor is to arrange a pre-start meeting with the Landscape Superintendent, relevant Council Officers, Contractor, Landscape Architect, Arborist and other consultants where applicable to clarify issues, agree on protocols, confirm hold point requirements and establish management procedures.

1.5 It is the responsibility of the Contractor to report any discrepancies within the landscape documentation and site conditions to the Landscape Superintendent for clarification and be fully resolved in writing prior to proceeding with the works.

1.6 Ensure that all appropriate barriers, signage, fencing and pedestrian / vehicle safety measures are in place before work commences.

1.7 The Contractor is to confine all works within the defined property boundaries and ensure all precautions to protect adjacent property, structures and vegetation from damage during construction are in place.

1.8 The Contractor is to seek confirmation with local authorities or similar as appropriate for all service locations prior to commencement of works. Ensure 'Dial Before You Dig' information is sourced and made available onsite at all times.

1.9 The Contractor shall be responsible at all times for the location on site of underground services that may be encountered within the vicinity of the works. For service location the following guidance should be followed;

Refer to local authority drawings where appropriate for all existing underground services. - Refer to civil engineering drawings for all stormwater, water and sewer services including

but not limited to conduits, pipes, service pits and access points. - Refer to electrical engineering drawings for location of all electrical services including but not limited to conduits, cables, switch-boxes and service point locations.

- Refer to drawings by others for location of all telecommunication services including but not limited to conduits, cables and service location points.

1.10 Protect all existing services encountered during construction works in accordance with elevant local authorities' specifications.

1.11 The Contractor is responsible for environmental management to areas defined as the scope of works area, as well as areas outside the defined scope of works where the Contractor undertakes work inclusive of stockpiles, traffic access, site storage compound and the like. All environmental management procedures shall be confirmed with the Landscape Superintendent and Head Contractor prior to construction works commencing.

1.12 The Contractor is to install all sediment and erosion control measures and maintain throughout the course of the project as outlined in the Council approved Sediment and Erosion Control Manage Plan (SEMP). A copy of the SEMP is to be available onsite at all times

1.13 Remove all weeds within the defined scope of works area as listed under the relevant Local and State Government declared plants and land protection leaislation. No plant material listed within Local or State declared weed legislation shall be brought onto or installed on site.

2. Hold Points

2.1 All landscape works will require the hold points outlined in table 1 to be adhered to. The Contractor must ensure all hold points have been signed off by the Landscape Superintendent or relevant Council officer prior to continuation of work. Any variation to the hold points

are to be approved by Council prior to commencement of works.

Table 1

Hold Point & Notice Period	Standards & Certificates	Required Personnel
1. Plant material and tree slock at nursery prior transportation to site (5 days notice prior to intended inspection date).	 Natspec tree certification As 2303:2018 – tree stock for landscape use Pre-delivery certificate from the supplier certifying the plant stock is in accordance with natspec and as 2303:2018 All plant stock to be obtained from a registered supplier with accreditation from the Nursery Industry Accreditation Scheme Australia (NIASA) 	 Landscape architect Landscape superintendent Council officer (internal projects)

Hold Point & Notice Period	Standards & Certificates	Required Personnel
2. Sub-grade cultivation (5 days notice prior to intended inspection date).	 AS 4419:2003 soils for landscaping and garden use In accordance with approved documentation drawings and specifications 	 Landscape superintendent Council officer (internal projects)
3. Testing, amelioration, importation and placement of topsoils (7 days notice prior to intended inspection date).	 AS 4419:2003 soils for landscaping and garden use Central Coast Council soil specification SD1020 	 Landscape superintendent Council officer (internal projects)
 Identification of TPZ and planting / works within the zone (5 days notice prior to intended inspection date). 	 AS 4970 protection of trees on development sites Tpz as identified in AS 4970 section 3 Arborist report 	 Landscape architect Landscape superintendent Arborist Aouncil officer (internal projects)
5. Setout of street trees and landscape areas (5 days notice prior to intended inspection date).	Approved landscape plans	 Landscape architect Landscape superintendent Council officer (internal projects)
6. Preparation of free pits and garden beds including excavation, drainage, root barriers and soil additives (5 days notice prior to intended inspection date).	 Approved landscape plans Compost and soil certificates Inspection report of supplied plant stock 	 Landscape superintendent Council officer (internal projects)
7. Practical completion of landscape works	 Approved landscape plans Landscape implementation and compliance report 	Landscape Architect Landscape Superintendent Council Officer

3. General Requirements

3.1 All landscape works are to be carried out in a manner consistent with industry best practice and

guidelines presented in this specification and documentation drawings. 3.2 This specification is to be read in conjunction with the Central Coast Council Soil Specification LSD801.

3.3 Representative samples of each landscape material outlined in the drawing schedules are to be submitted to the Landscape Superintendent, packed as to prevent cross contamination and labelled to indicate source and content.

3.4 No plants, plant sizes or quantities are to be substituted or altered without prior approval of the Landscape Superintendent and Council Officer.

3.5 Any alternatives to documented products, methods or systems must be accompanied by sufficient information to allow a thorough evaluation by the Landscape Superintendent and Council Officer prior to approval. All variations are to be approved by the Landscape Superintendent and Council Officer prior to nmencement of works.

3.6 If the substitution is for any reason other than availability, submit evidence that the substitution is of; - Net enhance value to the project

- Consistent with the project design intent, approved documentation drawings and is as effective as the identified item, detail or method

4. Tree Protection

4.1 All tree protection measures for existing trees to be retained are to be in accordance with AS 4970: Protection of Trees on Development Sites.

4.2 All pruning works on existing trees to be protected are to be in accordance with AS 4373: Pruning of Amenity Trees. An authorized and suitably qualified arborist must identify and approve trees that require pruning work prior to commencement of works.

4.3 Clearance of vegetation and removal trees not indicated on the approved drawings as 'to be removed' is prohibited without approval from the Landscape Superintendent and Council Officer.

4.4 Prior to work commencing, a Tree Protection Zone (TPZ) shall be established around all trees identified for retention within or immediately adjacent to the works area and must remain in place for the duration of the works

4.5 Clearly mark which trees are to be retained and protected. Display a sign in a prominent position at each entrance to the site, warning that trees are to be protected during the construction period. Provide a tree

4.6 The TPZ as identified in AS 4970 Section 3 is to be adhered to. Activities within the TPZ that are to not take place, unless otherwise stated include

- Modification of existing soil levels, excavations, trenching or movement or rock
- Mechanical removal of vegetation
- Storage of materials, plant or equipment or erection of site sheds
- Affixing of signage or hoarding to the trees
- Preparation of building materials, refueling or disposal of waste materials and chemicals
- Lighting fires
- Movement of pedestrian or vehicular traffic
- Temporary or permanent location of services, or the works required for their installation Any other activities that may cause damage to the tree
- If access, encroachment or incursion into the TPZ is deemed essential, prior authorisation is required by a qualified arborist and the Landscape Superintendent.

4.7 Temporary fencing or protective enclosures to the approval of the authorised arborist and Landscape Superintendent shall be erected on the edge of the TPZ excluding access to the area within at all times. 4.8 Where work is required to be undertaken within the TPZ, it is to be supervised by the authorised arborist and fenced enclosures in place around the specific tree/s to minimise damage to the tree and rootzone.

4.9 Root pruning where required shall be undertaken via the use of a clean and sharp implement minimising surface areas of the wounds. All roots with a diameter of 50mm or greater must be inspected by the authorised arborist prior to cutting.

4.10 Apply root hormone solution directly to cut roots if they are exposed during excavation. Alternatively, if the construction method does not expose roots, drench the zone at the surface with the root hormone solution. Apply the solution at the rates and intervals recommended by the manufacturer

4.11 All significant damage to trees that occurs by accident or as a result of unapproved work methods will require rectification works to the satisfaction of the authorised arborist and Council Officer. All costs associated by the rectification works are to be incurred by the Contractor.

4.12 Where trees to be retained are removed or are damaged to an extent that requires removal, the Contractor is to pay damages valued according to DR 99307: Amenity Trees Guide to Valuation, unless a value is nominated for a specific tree or agreed to by the Council Officer.

5. Landscape Works

5.1 For soil properties, testing and procedures, refer to the Central Coast Council Soil Specification LSD801. 5.2 Turf shall be installed onsite within 36 hours of cutting. Turf is to be supplied from a specialist grower and be of an even thickness, free from weeds and other foreign matter and be accompanied by a 'Certificate of

Authenticity'. Fertiliser must be applied to the topsoil and mixed evenly through prior to installation of the turf. Turf shall be rolled evenly at installation and be maintained even, free from dips, lumps and trip hazards throughout the establishment period. The watering, mowing and establishment of all turf areas will

remain the responsibility of the Contractor at all times during the establishment period. 5.3 Species of turf is to be in accordance with the approved drawings and Council Officer. The turf shall

contain minimum 90% of the specified species and be weed free. 5.4 Turf to be laid along contours with staggered, close butted joints, graded evenly with no hollows, so that finished turf surface is level with adjacent surface levels.

5.5 Mulch is to be free of damaging materials such as soil, weeds, rocks, sticks and other foreign matter and comply with the requirements set out in AS 4454:2012 Composts, Soil Conditioners and Mulches. 5.6 Site obtained mulch from tub-ground native vegetation is to be processed either through a tub grinder

or chipper and be weed free. Stockpiled mulch shall be aged for minimum 2 months after chipping prior to be being spread in the designated areas to avoid nitrogen draw down of the soils. 5.7 Mulch is to be spread immediately after planting to prevent erosion, loss of soil moisture and weed

infestation. Depths and types of mulch to be in accordance with the approved landscape drawings, kept clear of plant stems, and raked to an even surface flush with the surrounding finished levels or as per the details on the approved landscape drawings

5.8 Hydromulching to be a slurry mixture of seed, fertilizer, mulch and water applied at the rates as scheduled on the approved landscape drawings, thoroughly mixed in a purpose-made mechanical mixer and applied by high pressure pumping equipment by an appropriately trained operator. The mixture is to be evenly distributed over a scarified surface providing a firm friable seed bed.

5.9 Trees supplied to site are to have a well-established single leader, unless otherwise specified. Bifurcated trees with included bark will not be accepted regardless of species and habit. Trees that do not comply with the NATSPEC tree stock selection criteria and AS 2303:2018 may be rejected on arrival to site. 5.10 Trees to be installed as per the Central Coast Council standard details

5.11 Tree location, size and quantities are to be set out as per the approved landscape drawings, unless directed by the Landscape Superintendent or Council Officer.

5.12 Tree planting pits are to be excavated to a size and depth as indicated in the approved landscape drawings. Contact Landscape Superintendent or Council Officer if there are conflicts with underground services.

Tak
Sm
Co
Tub
150
170
200
250
200

					protection measures program before commencing works.				
					SCALE ON ORIGINAL A3 SIZE DRAWING	DRAWN CHECKED	D MILLER M BAMBER		Central Coa
					NOT TO SCALE		22/10/24 IANAGER APPROVAL	Central Coast Council	LANDSCAPI LANDSCAPE SPE
REV	AMENDMENT	DATE	DRAWN	APRVD	ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN	ROADS AND E	DRAINAGE INFRASTRUCTURE	INFRASTRUCTURE SERVICES	

5.14 The Contractor is to supply and install plants as per the approved landscape drawings and schedules. 5.15 Plants are to be healthy, vigorous, well-established, free from weeds, pests and diseases and of good form consistent with the species or variety. Root bound pots will be rejected. 5.16 Plants are to be hardened off for the prevailing site conditions, not soft or forced and conditioned to be suitable for planting in the natural climatic conditions of the site. 5.17 Plants are to be delivered to site in a covered vehicle to reduce the effect of wind damage, transpiration and stress. If plants are to be stored onsite prior to planting, ensure they are protected from winds and construction activities. Water plants thoroughly once a day or as required for every day they are stored on site. 5.18 Do not plant in unsuitable weather conditions such as extreme heat, cold, wind or rain. In other than sandy soils, suspend excavation when the soil is wet or during frost periods. 5.19 When planting, remove the plant from the container with minimum disturbance to the root ball. Ensure

5.13 Street tree setout must be in accordance with Central Coast Council requirements in relation to offsets to paths, services, lights, driveways and road infrastructure as shown in Table 2

Table 2

Street Tree Positioning			
ltem	Minimum distance		
Kerb and footpath	600-1000mm behind back of kerb (where possible) or centrally located between kerb and footpath (future or existing), dependent on verge width		
Driveways	3m		
Light poles	5m		
Stormwater pits	3m		
Adjacent underground services	1m or according to the service provider		
Street corner intersections	6m from kerb tangent point		

the root ball is moist and place it in its final position, in the centre of the hole and plumb, and with the top soil level of the plant root ball level with the finished surface of the surrounding soil. Compact lightly so as to ninimize subsidence without compacting the backfill. Avoid mixing mulch with topsoi

5.20 Thoroughly water the plants before planting, immediately after planting and as required to maintain growth rates free of stress.

Plant Procurement

6.1 Advanced trees and specimen plants are to be ordered immediately upon awarding of the contracted landscape works to ensure the availability at the time of planting. No substitutes will be accepted due to not placing plant procurement orders in a timely manner. Evidence of a plant procurement contract in place between the plant supplier and purchaser is to be presented to the Landscape Superintendent and Council Officer as proof of ordering.

6.2 Submit photographic examples of all trees greater than 75Lt pot and any specimen plant species to the Landscape Superintendent. The photographs are to be clear, in colour, identifiable scale reference located in the same plane as the plant trunk and labelled with plant species name.

6.3 A Tree Inspection Form is to be completed by the Landscape Superintendent at the time of inspection for each batch inspected. Non-conforming plants may be rejected or corrective action procedures put in place to ensure conformity at the time of delivery. Trees will follow the assessment criteria outlined in AS 2303.

6.4 For trees and shrubs in small containers, Table 3 shall be referenced to make a balanced assessment of the size of the plant appropriate to the container size at the time of delivery

ole 3

nall Container Grown Trees and Shrubs Table			
ontainer size	Height above soil (m)		
	Thin-stemmed species	Thick-stemmed species	
bes or plant cells	1.5 to 2.5 x the height of the container		
0mm (1.8I)	0.4-0.6	0.3 – 0.5	
0mm (2.6I)	0.5 – 0.7	0.4 - 0.6	
0mm (4l)	0.7 – 0.9	0.6 – 0.8	
i0mm (8I)	1.0 – 1.2	0.8 – 1.0	
0mm (15I)	1.2 – 1.5	1.0 – 1.2	

ast Council	STANDARD DRAWING	
PE SERIES	DRAWING NUMBER	REV -
ECIFICATIONS	SHEET 1 OF 2	A3

CENTRAL COAST COUNCIL LANDSCAPE SPECIFICATION

6.5 For large container trees above 20L, AS 2303 Appendix E, Table E1 is to be referenced for tree supply conformance. Sampling of the batch is to be in accordance with AS 2303 Appendix A, Table A1.
6.6 A contingency of 15% above the quantities scheduled on the approved landscape drawings is to grown by the supplier to allow for the anticipated losses in the course of propagation, growing on and replacement of failure on site during the establishment period. Any surplus material shall remain the property of the supplier.

6.7 A certificate of warranty from the supplier is to be issued to the Landscape Superintendent and Council Officer at the time of each delivery confirming that the plants supplied are true-to-species type, free of disease and fungal infection and/or any other impediment to their future growth and that they have been fully acclimatized for the conditions of the site.

7. Establishment & Maintenance

7.1 The Contractor is to maintain the whole of landscape works for the period outlined in the Conditions of Consent from the date of Practical Completion up to the final handover to Council.
7.2 Following completion of the landscape works, a Practical Completion inspection is to be undertaken by the Landscape Superintendent, Landscape Architect and Council Officer. A Practical Completion Report is to be prepared by the Landscape Superintendent and issued to the Council. The report will outline any defects or rectification works to be undertaken by the Contractor and confirm that the landscape works have been installed as per the approved landscape documentation.

7.3 Throughout the Establishment and Maintenance Period, the Contractor is continue to carry out recurrent works of a maintenance nature including but not limited to watering, mowing, weeding, fertilizing, top dressing, rubbish removal, pest and disease control, staking and tying, replanting, cultivating, pruning and keeping the site neat and tidy.

7.4 The Contractor shall assume there is no site water available other than that which is provided as part of the works. The Contractor shall be responsible for supplying water and / or paying for water for the duration of the works. The Contractor shall provide a methodology of watering operations to the Landscape Superintendent for approval prior to commencement. Watering shall be done at the times of day to minimize water evaporation loss. Do not water during the hottest period of the Summer days. Adhere to any Local. State or Federal legislated water restrictions at the time of the works.

7.5 Tables 4 & 5 shall be used a guide for watering of tree stock. The frequency will vary depending on weather conditions during the Establishment & Maintenance Period.

Table 4

Tree Watering Frequency Table				
Time of year	1st Month	2nd & 3rd Month	Establishment period	
Sep-Feb	4 x Per week	3 x Per week	2 x Per week	
Mar-May	3 x Per week	2 x Per week	1 x Per week	
Jun-Aug	2 x Per week	1 x Per week	1 x Per fortnight	

Table 5

Tree Container Size / Volume of Water Per Watering Cycle				
Container size	Free draining soil	Heavy Soil / Clay		
45lt	10 i t	51†		
100lt	20lt	15lt		
1 50lt	30lt	2011		
200lt	40lt	30lt		
250l†	50lt	351†		
300lt	60lt	45lt		
400lt	80lt	60lt		
500lt	100lt	75lt		

SCALE ON ORIGINAL A3 SIZE DRAWING DRAWN D MILLER Central Coa M BAMBER CHECKED Central DATE 22/10/24 Coast UNIT MANAGER APPROVAL NOT TO SCALE LANDSCAP Council LANDSCAPE SP DATE DRAWN APRVD ALL DIMENSIONS IN mm UNLESS OTHERWISE SHOWN ROADS AND DRAINAGE INFRASTRUCTURE AMENDMENT INFRASTRUCTURE SERVICES REV

7.6 The Contractor is to keep a Maintenance Logbook for the duration of the Establishment and Maintenance Period, verifying that satisfactory maintenance of the works has been conducted and that any necessary rectification measures have been carried out to a high professional standard. The Maintenance Logbook is to be made available at anytime to the Landscape Superintendent and Council Officer.

7.7 The Contractor is to continue to replace failed, damaged or stolen plants for the full extent of the Establishment and Maintenance Period. Should theft, vandalism or failure of particular species continue as an ongoing issue, contact the Landscape Superintendent, Principal and Council Officer to agree on appropriate solution.

7.8 Quarterly inspections are to occur with the Landscape Superintendent, Contractor and Council Officer. A report accompanied by photos is to be prepared by the Landscape Superintendent summarising the inspection outcomes and providing any

Superintendent summarising the inspection outcomes and providing any recommendations for rectification works to be carried out. The reports will be made available to Central

Coast Council as part of the Final Handover process. 7.9 At the end of the Establishment and Maintenance Period, a Final Handover Inspection is to be

7.9 All the end of the Establishment and Maintenance Feriod, a final hardwork inspection is to be conducted between the Landscape Superintendent, Contractor and Council to determine that the landscape works have established adequately and to the approval of Council.

ast Council	STANDARD DRAWING	
PE SERIES	DRAWING NUMBER	REV -
ECIFICATIONS	SHEET 2 OF 2	A3